组队学习——支持向量机
本次学习支持向量机部分数据如下所示
| ID | mass | width | height | color_score | fruit_name | kind |
其中ID:1-59是对应训练集和验证集的数据,60-67是对应测试集的数据,其中水果类别一共有四类包括apple、lemon、orange、mandarin。要求根据1-59的数据集的自变量(mass、width、height、color_score)和因变量(kind),去预测60-67的数据水果种类
一、导入支持向量机和其他的库
import numpy as np from scipy import stats from sklearn.model_selection import train_test_split import pandas as pd from sklearn import svm from sklearn.metrics import accuracy_score
二、读取数据
# 设置文件路径
file_path = 'E:\\Jupyter Workspace\\数学建模\\多分类水果数据.csv'
# 使用 pandas 的 read_csv 函数读取 CSV 文件,注意查看csv文件的编码,默认不填为utf-8编码
data = pd.read_csv(file_path,encoding='gbk')
# 显示数据的前几行来验证读取是否成功
print(data.head())
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
pd.set_option('display.width', 300) # 设置打印宽度(**重要**)
print(data.isnull().any())
三、划分数据
# 选择第二列到最后一列,第一列相当于序号列可以忽略 X = data.iloc[0:59, 1:5] # [:)左闭右开 Y = data.iloc[0:59, 6] # 划分数据集为训练集和验证集 X_train, X_valid, Y_train, Y_valid = train_test_split(X, Y, test_size=0.2, random_state=42)
四、RBF核函数
# RBF 核函数
rbf_model = svm.SVC(kernel='rbf', gamma='auto')
rbf_model.fit(X_train, Y_train)
rbf_pred = rbf_model.predict(X_valid)
print("RBF Kernel Accuracy:", accuracy_score(Y_valid, rbf_pred))
五、线性核函数
# 线性核函数
linear_model = svm.SVC(kernel='linear')
linear_model.fit(X_train, Y_train)
linear_pred = linear_model.predict(X_valid)
print("Linear Kernel Accuracy:", accuracy_score(Y_valid, linear_pred))
六、多项式核函数
# 多项式核函数
poly_model = svm.SVC(kernel='poly', degree=3)
poly_model.fit(X_train, Y_train)
poly_pred = poly_model.predict(X_valid)
print("Polynomial Kernel Accuracy:", accuracy_score(Y_valid, poly_pred))
七、Sigmoid核函数
# Sigmoid 核函数
sigmoid_model = svm.SVC(kernel='sigmoid')
sigmoid_model.fit(X_train, Y_train)
sigmoid_pred = sigmoid_model.predict(X_valid)
print("Sigmoid Kernel Accuracy:", accuracy_score(Y_valid, sigmoid_pred))
其他
结合相关资料比较一下哪种核函数更适合该题数据,说明理由,同时给出测试集的对应预测结果
test_X = data.iloc[59:, 1:5] # print(test_X) test_Y = data.iloc[59:, 6] # print(test_Y) #举例:若为xxx核函数 #预测数据 xxx_pred_test = xxx_model.predict(test_X) print(xxx_pred_test)
拓展:尝试用以下指标衡量支持向量机(SVR)的预测效果
● MSE(均方误差): 预测值与实际值之差平方的期望值。取值越小,模型准确度越高。
● RMSE(均方根误差):为 MSE 的平方根,取值越小,模型准确度越高。
● MAE(平均绝对误差): 绝对误差的平均值,能反映预测值误差的实际情况。取值越小,模型准确度越高。
● MAPE(平均绝对百分比误差): 是 MAE 的变形,它是一个百分比值。取值越小,模型准确度越高。
● R²: 将预测值跟只使用均值的情况下相比,结果越靠近 1 模型准确度越高。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

