大数据采集技术与应用,大数据采集
温馨提示:这篇文章已超过526天没有更新,请注意相关的内容是否还可用!
本篇文章给大家谈谈大数据采集,以及大数据采集技术与应用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。大数据的使用价值取决于其数量。尽管大数据能够为企业加深对数据的深入了解,但保护这种数据依然具备挑战性。数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。关于大数据采集和大数据采集技术与应用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?《大数据采集技术与应用,大数据采集》来自互联网同行内容,若有侵权,请联系我们删除!
本篇文章给大家谈谈大数据采集,以及大数据采集技术与应用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
为您整合互联网精准答案:
1、常见的大数据采集工具有哪些?
2、大数据采集有哪些方面?
3、大数据怎么采集数据
4、大数据采集从哪些方面入手?
常见的大数据采集工具有哪些?
1、离线搜集工具:ETL
在数据仓库的语境下,ETL基本上便是数据搜集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需求针对具体的事务场景对数据进行治理,例如进行不合法数据监测与过滤、格式转换与数据规范化、数据替换、确保数据完整性等。
2、实时搜集工具:Flume/Kafka
实时搜集首要用在考虑流处理的事务场景,比方,用于记录数据源的履行的各种操作活动,比方网络监控的流量办理、金融运用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据搜集会成为Kafka的顾客,就像一个水坝一般将上游源源不断的数据拦截住,然后依据事务场景做对应的处理(例如去重、去噪、中心核算等),之后再写入到对应的数据存储中。
3、互联网搜集工具:Crawler, DPI等
Scribe是Facebook开发的数据(日志)搜集体系。又被称为网页蜘蛛,网络机器人,是一种按照一定的规矩,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的搜集。
除了网络中包含的内容之外,关于网络流量的搜集能够运用DPI或DFI等带宽办理技术进行处理。
大数据采集有哪些方面?
1. 数据质量把控
不论什么时候应用各种各样数据源,数据质量全是一项挑战。这代表着企业必须做的工作中是保证数据格式准确配对,并且没有重复数据或缺乏数据导致分析不靠谱。企业必须先分析和提前准备数据,随后才可以将其与别的数据一起开展分析。
2.拓展
大数据的使用价值取决于其数量。可是,这也将会变成一个关键难题。假如企业并未设计构架方案开始进行拓展,则将会迅速面临一系列问题。其一,假如企业不准备基础设施建设,那麼基础设施建设的成本费便会提升。这将会给企业的费用预算带来压力。其二,假如企业不准备拓展,那麼其特性将会明显降低。这两个难题都应当在搭建大数据构架的整体规划环节获得处理。
3、安全系数
尽管大数据能够为企业加深对数据的深入了解,但保护这种数据依然具备挑战性。欺诈者和网络黑客将会对企业的数据十分感兴趣,他们将会试着加上自身的仿冒数据或访问企业的数据以获得敏感信息。
大数据怎么采集数据
数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。我们今天就来看看大数据技术在数据采集方面采用了哪些方法:
1、离线采集:工具:ETL;在数据仓库的语境下,ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需要针对具体的业务场景对数据进行治理,例如进行非法数据监测与过滤、格式转换与数据规范化、数据替换、保证数据完整性等。
2、实时采集:工具:Flume/Kafka;实时采集主要用在考虑流处理的业务场景,比如,用于记录数据源的执行的各种操作活动,比如网络监控的流量管理、金融应用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据采集会成为Kafka的消费者,就像一个水坝一般将上游源源不断的数据拦截住,然后根据业务场景做对应的处理(例如去重、去噪、中间计算等),之后再写入到对应的数据存储中。这个过程类似传统的ETL,但它是流式的处理方式,而非定时的批处理Job,些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求。
3、互联网采集:工具:Crawler, DPI等;Scribe是Facebook开发的数据(日志)收集系统。又被称为网页蜘蛛,网络机器人,是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的采集。爬虫除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
4、其他数据采集方法对于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,可以通过与数据技术服务商合作,使用特定系统接口等相关方式采集数据。比如八度云计算的数企BDSaaS,无论是数据采集技术、BI数据分析,还是数据的安全性和保密性,都做得很好。数据的采集是挖掘数据价值的第一步,当数据量越来越大时,可提取出来的有用数据必然也就更多。只要善用数据化处理平台,便能够保证数据分析结果的有效性,助力企业实现数据驱动。
大数据采集从哪些方面入手?
1. 数据质量把控
不论什么时候应用各种各样数据源,数据质量全是一项挑战。这代表着企业必须做的工作中是保证数据格式准确配对,并且没有重复数据或缺乏数据导致分析不靠谱。企业必须先分析和提前准备数据,随后才可以将其与别的数据一起开展分析。
2.拓展
大数据的使用价值取决于其数量。可是,这也将会变成一个关键难题。假如企业并未设计构架方案开始进行拓展,则将会迅速面临一系列问题。其一,假如企业不准备基础设施建设,那麼基础设施建设的成本费便会提升。这将会给企业的费用预算带来压力。其二,假如企业不准备拓展,那麼其特性将会明显降低。这两个难题都应当在搭建大数据构架的整体规划环节获得处理。
3、安全系数
尽管大数据能够为企业加深对数据的深入了解,但保护这种数据依然具备挑战性。欺诈者和网络黑客将会对企业的数据十分感兴趣,他们将会试着加上自身的仿冒数据或访问企业的数据以获得敏感信息。
互联网犯罪嫌疑人能够制作数据并将其引进其数据湖。比如,假定企业追踪网址点一下频次以发觉总流量中的出现异常方式,并在其网址上搜索犯罪行为,互联网犯罪嫌疑人能够渗入企业的系统软件,在企业的大数据中能够寻找很多的比较敏感信息,假如企业没有维护周围环境,数据加密数据并勤奋密名化数据以清除比较敏感信息的话,互联网犯罪嫌疑人将会会发掘其数据以获得这种信息。
关于大数据采集从哪些方面入手,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
关于大数据采集和大数据采集技术与应用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
本文从网络转载,原文地址:https://ww.hanming.com/17347.html,原作者保留一切权利,若侵权请联系删除。
《大数据采集技术与应用,大数据采集》来自互联网同行内容,若有侵权,请联系我们删除!
