代码随想录学习 54day 图论 A star算法

07-21 1299阅读

A * 算法精讲 (A star算法)

卡码网:126. 骑士的攻击
题目描述
在象棋中,马和象的移动规则分别是“马走日”和“象走田”。现给定骑士的起始坐标和目标坐标,要求根据骑士的移动规则,计算从起点到达目标点所需的最短步数。
棋盘大小 1000 x 1000(棋盘的 x 和 y 坐标均在 [1, 1000] 区间内,包含边界)
输入描述
第一行包含一个整数 n,表示测试用例的数量。
接下来的 n 行,每行包含四个整数 a1, a2, b1, b2,分别表示骑士的起始位置 (a1, a2) 和目标位置 (b1, b2)。
输出描述
输出共 n 行,每行输出一个整数,表示骑士从起点到目标点的最短路径长度。
输入示例
6
5 2 5 4
1 1 2 2
1 1 8 8
1 1 8 7
2 1 3 3
4 6 4 6
输出示例
2
4
6
5
1
0

思路

我们看到这道题目的第一个想法就是广搜,这也是最经典的广搜类型题目。
这里我直接给出广搜的C++代码:

code c++ 超时

#include
#include
#include
using namespace std;
int moves[1001][1001];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};
void bfs(int a1,int a2, int b1, int b2)
{
	queue q;
	q.push(a1);
	q.push(a2);
	while(!q.empty())
	{
		int m=q.front(); q.pop();
		int n=q.front(); q.pop();
		if(m == b1 && n == b2)
		break;
		for(int i=0;i
			int mm=m + dir[i][0];
			int nn=n + dir[i][1];
			if(mm  1000)
			continue;
			if(!moves[mm][nn])
			{
				moves[mm][nn]=moves[m][n]+1;
				q.push(mm);
				q.push(nn);
			}
		}
	}
}
int main()
{
    int n, a1, a2, b1, b2;
    cin >> n;
    while (n--) {
        cin >> a1 >> a2 >> b1 >> b2;
        memset(moves,0,sizeof(moves));
		bfs(a1, a2, b1, b2);
		cout  1000:continue
                else:
                    visited[nextx][nexty] = True
                    grid[nextx][nexty] = counts
                    # print(nextx, nexty, counts)
                if nextx == end[0] and nexty == end[1]:
                    return counts
                else:
                    que.append([nextx, nexty])
from collections import deque
print('xxxxxxxx')
memsets = [[5, 2, 5, 4], [1, 1, 2, 2], [1, 1, 8, 8], [1, 1, 8, 7], [2, 1, 3, 3], [4, 6, 4, 6]]
for points in memsets:
    res = bfs(points)
    print(points, res)

code python 2

from collections import deque
def bfs(points):
    start = points[:2]
    end = points[-2:]
    if start == end:return 0
    grid = [[-1  for _ in range(1001)] for _ in range(1001)]
    que = deque([start])
    grid[start[0]][start[1]] = 0
    dir = [[-1, -2],[ -2, -1], [-2, 1], [-1, 2], [1, 2], [2, 1],[ 2, -1], [1, -2]]
    counts = 0
    while que:
        counts += 1
        lens = len(que)
        for _ in range(lens):
            point = que.popleft()
            # print('\n', point)
            for i in range(len(dir)):
                nextx = point[0] + dir[i][0]
                nexty = point[1] + dir[i][1]
                if grid[nextx][nexty]!=-1 or nextx  1000 or nexty > 1000:continue
                else:
                    grid[nextx][nexty] = counts
                    # print(nextx, nexty, counts)
                if nextx == end[0] and nexty == end[1]:
                    return counts
                else:
                    que.append([nextx, nexty])
from collections import deque
print('xxxxxxxx')
memsets = [[5, 2, 5, 4], [1, 1, 2, 2], [1, 1, 8, 8], [1, 1, 8, 7], [2, 1, 3, 3], [4, 6, 4, 6]]
for points in memsets:
    res = bfs(points)
    print(points, res)

code python 3

## 20240717 code
from collections import deque
def bfs(points, grid):
    start = points[:2]
    end = points[-2:]
    # grid = [[-1 for _ in range(1001)] for _ in range(1001)]
    grid[start[0]][start[1]] = 0
    offsets = [[-2, -1], [-2, 1], [2, -1], [2, 1], [1, -2], [1, 2], [-1, -2], [-1, 2]]  # 8个可以移动的offset
    ## 初始化, 进入队列
    que = deque([start])
    counts = 0  # 统计走了几步到达目标点
    while que:
        node = que.popleft()  # 取出元素
        counts += 1
        if node[0] == end[0]  and node[1] == end[1]:
            print(f'counts"{counts}')
            break  # 找到终点了  因为是先赋值, 后判断
        for i in range(8):    # 8个可以移动的offset
            nextx = node[0] + offsets[i][0]
            nexty = node[1] + offsets[i][1]
            # 索引的合法性进行判断
            if nextx  1000 or nexty > 1000: continue
            # 如果grid没有被访问过
            if grid[nextx][nexty] == -1:
                # 数值在node 的 基础上 + 1
                grid[nextx][nexty] = grid[node[0]][node[1]] + 1
                # 该位置放入 que  广度搜索
                que.append([nextx, nexty])
memsets = [[5, 2, 5, 4], [1, 1, 2, 2], [1, 1, 8, 8], [1, 1, 8, 7], [2, 1, 3, 3], [4, 6, 4, 6]]
for points in memsets:
    grid = [[-1 for _ in range(1001)] for _ in range(1001)]
    bfs(points, grid)
    print(points, grid[points[-2]][points[-1]]) # 终点的值
# 但是这个代码的计算量很大,
"""
counts"12
[5, 2, 5, 4] 2
counts"35
[1, 1, 2, 2] 4
counts"93
[1, 1, 8, 8] 6
counts"78
[1, 1, 8, 7] 5
counts"3
[2, 1, 3, 3] 1
counts"1
[4, 6, 4, 6] 0
"""
提交后,大家会发现,超时了。
因为本题地图足够大,且 n 也有可能很大,导致有非常多的查询。
我们来看一下广搜的搜索过程,如图,红色是起点,绿色是终点,黄色是要遍历的点,最后从 起点 找到 达到终点的最短路径是棕色。
可以看出 广搜中,做了很多无用的遍历, 黄色的格子是广搜遍历到的点。
这里我们能不能让遍历方向,向这终点的方向去遍历呢?
这样我们就可以避免很多无用遍历。

Astar

Astar 是一种 广搜的改良版。 有的是 Astar 是 dijkstra 的改良版。
其实只是场景不同而已 我们在搜索最短路的时候, 如果是无权图(边的权值都是1) 那就用广搜,代码简洁,时间效率和 dijkstra 差不多 (具体要取决于图的稠密)
如果是有权图(边有不同的权值),优先考虑 dijkstra。
而 Astar 关键在于 启发式函数, 也就是 影响 广搜或者 dijkstra 从 容器(队列)里取元素的优先顺序。
以下,我用BFS版本的A * 来进行讲解。
在BFS中,我们想搜索,从起点到终点的最短路径,要一层一层去遍历。
如果使用 A* 的话,其搜索过程是这样的,如图,图中着色的都是我们要遍历的点。
(上面两图中 最短路长度都是8,只是走的方式不同而已)
大家可以发现 BFS 是没有目的性的 一圈一圈去搜索, 而 A * 是有方向性的去搜索。
看出 A * 可以节省很多没有必要的遍历步骤。
为了让大家可以明显看到区别,我将 BFS 和 A * 制作成可视化动图,大家可以自己看看动图,效果更好。
地址:https://kamacoder.com/tools/knight.html
那么 A * 为什么可以有方向性的去搜索,它是如何知道方向呢?
其关键在于 启发式函数。
那么 启发式函数 落实到代码处,如果指引搜索的方向?
在本篇开篇中给出了BFS代码,指引 搜索的方向的关键代码在这里:
int m=q.front();q.pop();
int n=q.front();q.pop();
从队列里取出什么元素,接下来就是从哪里开始搜索。
所以 启发式函数 要影响的就是队列里元素的排序!
这是影响BFS搜索方向的关键。
对队列里节点进行排序,就需要给每一个节点权值,如何计算权值呢?
每个节点的权值为F,给出公式为:F = G + H
G:起点达到目前遍历节点的距离
F:目前遍历的节点到达终点的距离
起点达到目前遍历节点的距离 + 目前遍历的节点到达终点的距离 就是起点到达终点的距离。
本题的图是无权网格状,在计算两点距离通常有如下三种计算方式:
曼哈顿距离,计算方式: d = abs(x1-x2)+abs(y1-y2)
欧氏距离(欧拉距离) ,计算方式:d = sqrt( (x1-x2)^2 + (y1-y2)^2 )
切比雪夫距离,计算方式:d = max(abs(x1 - x2), abs(y1 - y2))
x1, x2 为起点坐标,y1, y2 为终点坐标 ,abs 为求绝对值,sqrt 为求开根号,
选择哪一种距离计算方式 也会导致 A * 算法的结果不同。
本题,采用欧拉距离才能最大程度体现 点与点之间的距离。
所以 使用欧拉距离计算 和 广搜搜出来的最短路的节点数是一样的。 (路径可能不同,但路径上的节点数是相同的)
我在制作动画演示的过程中,分别给出了曼哈顿、欧拉以及契比雪夫 三种计算方式下,A * 算法的寻路过程,大家可以自己看看看其区别。
动画地址:https://kamacoder.com/tools/knight.html
计算出来 F 之后,按照 F 的 大小,来选去出队列的节点。
可以使用 优先级队列 帮我们排好序,每次出队列,就是F最小的节点。
实现代码如下:(启发式函数 采用 欧拉距离计算方式)

code c++

#include
#include
#include
using namespace std;
int moves[1001][1001];
int dir[8][2]={-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};
int b1, b2;
// F = G + H
// G = 从起点到该节点路径消耗
// H = 该节点到终点的预估消耗
struct Knight{
    int x,y;
    int g,h,f;
    bool operator  1000 || next.y  1000)
			continue;
			if(!moves[next.x][next.y])
			{
				moves[next.x][next.y] = moves[cur.x][cur.y] + 1;
                // 开始计算F
				next.g = cur.g + 5; // 统一不开根号,这样可以提高精度,马走日,1 * 1 + 2 * 2 = 5
                next.h = Heuristic(next);
                next.f = next.g + next.h;
                que.push(next);
			}
		}
	}
}
int main()
{
    int n, a1, a2;
    cin >> n;
    while (n--) {
        cin >> a1 >> a2 >> b1 >> b2;
        memset(moves,0,sizeof(moves));
        Knight start;
        start.x = a1;
        start.y = a2;
        start.g = 0;
        start.h = Heuristic(start);
        start.f = start.g + start.h;
		astar(start);
        while(!que.empty()) que.pop(); // 队列清空
		cout  1000: continue
            if grid[next.x][next.y] == -1:
                grid[next.x][next.y] = grid[cur.x][cur.y] + 1
                # 计算距离
                next.g = cur.g + 5   # 每走一步的距离一定与上一步 + 5, 而不是和原点  保证一个距离在同一个水平, 走一步之后都是在5的基础上 + (next, end)的距离
                # print(start.x,start.y, next.x,next.y,'----------------------------------------')
                next.h = Heuristic(next, end)
                next.f = next.g + next.h
                # print(next.x, next.y, next.g, next.h, next.f, grid[next.x][next.y], 'next=================')
                que.put(next)
def main():
    memsets = [[5, 2, 5, 4], [1, 1, 2, 2], [1, 1, 8, 8], [1, 1, 8, 7], [2, 1, 3, 3], [4, 6, 4, 6]]
    for points in memsets[:]:
        grid = [[-1 for _ in range(1001)] for _ in range(1001)]
        grid[points[0]][points[1]] = 0  # 起点的初始化
        start = Knight(points[0], points[1])  # 初始化, x, y, g, h, f
        end = Knight(points[-2], points[-1])
        start.g = 0
        start.h = Heuristic(start, end)
        start.f = start.g + start.h
        Astartbfs(grid, start, end)
        print('输出的结果', grid[points[-2]][points[-1]])
        print('\n')
        while not que.empty():
            que.get()  # 如果优先级队列非空, 则清空该队列
main()

code 的步数统计

到达终点, counts: 6
输出的结果 2
到达终点, counts: 18
输出的结果 4
到达终点, counts: 16
输出的结果 6
到达终点, counts: 10
输出的结果 5
到达终点, counts: 2
输出的结果 1
到达终点, counts: 1
输出的结果 0
明显小于未优化之前的步数

python code3

# 把昨天写的小垃圾修正一下
昨天主要的错误是:
k1 = grid[nextx][nexty]  * 5
k2 = Heuristic([nextx, nexty], end)
que.put(Knight(k1 + k2, [nextx, nexty]))
昨天写成了
k1 = Heuristic(start, [nextx, nexty]) + 5
k2 = Heuristic([nextx, nexty], end)
que.put(Knight(k1 + k2, [nextx, nexty]))
没有理解 k1 的作用,k1 最大的作用是 走了 1步则k1=0+5, 走了2步, k1 = 0 + 5 + 5, 每多走一步, 一定是在上一步的k1的基础上递增。而不是计算start和当前步的欧式距离
,欧式距离只适用于: 当前步到达终点位置的计算。
from queue import PriorityQueue
class Knight:
    def __init__(self,k, point):
        self.k = k
        self.point = point
    def __lt__(self, other):
        return self.k  1000 or nexty > 1000:continue
            if grid[nextx][nexty] == -1:
                grid[nextx][nexty] = grid[point[0]][point[1]] + 1
                # print(nextx, nexty, counts)
                k1 = grid[nextx][nexty]  * 5
                k2 = Heuristic([nextx, nexty], end)
                que.put(Knight(k1 + k2, [nextx, nexty]))
from collections import deque
print('xxxxxxxx')
memsets = [[5, 2, 5, 4], [1, 1, 2, 2], [1, 1, 8, 8], [1, 1, 8, 7], [2, 1, 3, 3], [4, 6, 4, 6]]
for points in memsets:
    res = bfs(points)
    print(points, res)
代码随想录学习 54day 图论 A star算法
(图片来源网络,侵删)
VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]