手把手教你从0到1搭建一个AI Agent(智能体)

2024-06-29 1857阅读

LLM为什么需要agent化

虽然大语言模型的能力很强大,但是Llm仅限于用于训练的知识,这些知识很快会过时,所以llm有以下缺点

  • 幻觉
  • 结果并不总是真实的
  • 对时事的了解有限或一无所知
  • 难以应对复杂推理和计算

    例如:买高铁票

    手把手教你从0到1搭建一个AI Agent(智能体)

    (虽然LLM完全理解了买票的行为,但是它本身并不知道“我”所处的城市,列车的时刻表,价格等等信息)

    而基于大模型的Agent (LLM based Agent) 可以利用外部工具来克服以上缺点。

    ReAct Agent

    ReAct Agent 论文

    LLM Agent 的升级之路:

    Standard IO(直接回答) -> COT(chain-of-thought)(思维链) -> Action-Only (Function calling) -> Reason + Action

    ReAct = Reasoning(推理) + Action(行动)

    手把手教你从0到1搭建一个AI Agent(智能体)

    ReAct Agent 的组成部分 (通过LangChain实现)

    • Models:LLM
    • Prompts:对Agent的指令、约束
    • Memory : 记录Action执行状态 & 缓存已知信息
    • Indexes : 用于结构化文档,以便和模型交互
    • Chains :Langchain的核心(链)
    • Agent

      ReAct Agent 的prompt 模板

      from langchain_core.prompts import PromptTemplate
      template = '''Answer the following questions as best you can. You have access to the following tools:
      {tools}
      Use the following format:
      Question: the input question you must answer
      Thought: you should always think about what to do
      Action: the action to take, should be one of [{tool_names}]
      Action Input: the input to the action
      Observation: the result of the action
      ... (this Thought/Action/Action Input/Observation can repeat N times)
      Thought: I now know the final answer
      Final Answer: the final answer to the original input question
      Begin!
      Question: {input}
      Thought:{agent_scratchpad}'''
      prompt = PromptTemplate.from_template(template)
      

      代码

      手写一个能帮忙买火车票的智能Agent

      注:火车票相关API均为mock

      安装 & import依赖

      pip install langchain
      pip install uuid
      pip install pydantic
      import json
      import sys
      from typing import List, Optional, Dict, Any, Tuple, Union
      from uuid import UUID
      from langchain.memory import ConversationTokenBufferMemory
      from langchain.tools.render import render_text_description
      from langchain_core.callbacks import BaseCallbackHandler
      from langchain_core.language_models import BaseChatModel
      from langchain_core.output_parsers import PydanticOutputParser, StrOutputParser
      from langchain_core.outputs import GenerationChunk, ChatGenerationChunk, LLMResult
      from langchain_core.prompts import PromptTemplate
      from langchain_core.tools import StructuredTool
      from langchain_openai import ChatOpenAI
      from pydantic import BaseModel, Field, ValidationError
      

      定义工具(Tools)

      细节可参考LangChain定义Tool

      from typing import List
      from langchain_core.tools import StructuredTool
      def search_train_ticket(
              origin: str,
              destination: str,
              date: str,
              departure_time_start: str,
              departure_time_end: str
      ) -> List[dict[str, str]]:
          """按指定条件查询火车票"""
          # mock train list
          return [
              {
                  "train_number": "G1234",
                  "origin": "北京",
                  "destination": "上海",
                  "departure_time": "2024-06-01 8:00",
                  "arrival_time": "2024-06-01 12:00",
                  "price": "100.00",
                  "seat_type": "商务座",
              },
              {
                  "train_number": "G5678",
                  "origin": "北京",
                  "destination": "上海",
                  "departure_time": "2024-06-01 18:30",
                  "arrival_time": "2024-06-01 22:30",
                  "price": "100.00",
                  "seat_type": "商务座",
              },
              {
                  "train_number": "G9012",
                  "origin": "北京",
                  "destination": "上海",
                  "departure_time": "2024-06-01 19:00",
                  "arrival_time": "2024-06-01 23:00",
                  "price": "100.00",
                  "seat_type": "商务座",
              }
          ]
      def purchase_train_ticket(
              train_number: str,
      ) -> dict:
          """购买火车票"""
          return {
              "result": "success",
              "message": "购买成功",
              "data": {
                  "train_number": "G1234",
                  "seat_type": "商务座",
                  "seat_number": "7-17A"
              }
          }
      search_train_ticket_tool = StructuredTool.from_function(
          func=search_train_ticket,
          name="查询火车票",
          description="查询指定日期可用的火车票。",
      )
      purchase_train_ticket_tool = StructuredTool.from_function(
          func=purchase_train_ticket,
          name="购买火车票",
          description="购买火车票。会返回购买结果(result), 和座位号(seat_number)",
      )
      finish_placeholder = StructuredTool.from_function(
          func=lambda: None,
          name="FINISH",
          description="用于表示任务完成的占位符工具"
      )
      tools = [search_train_ticket_tool, purchase_train_ticket_tool, finish_placeholder]
      

      Prompt

      主要任务Prompt

      prompt_text = """
      你是强大的AI火车票助手,可以使用工具与指令查询并购买火车票
      你的任务是:
      {task_description}
      你可以使用以下工具或指令,它们又称为动作或actions:
      {tools}
      当前的任务执行记录:
      {memory}
      按照以下格式输出:
      任务:你收到的需要执行的任务
      思考: 观察你的任务和执行记录,并思考你下一步应该采取的行动
      然后,根据以下格式说明,输出你选择执行的动作/工具:
      {format_instructions}
      """
      

      最终回复Prompt

      final_prompt = """
      你的任务是:
      {task_description}
      以下是你的思考过程和使用工具与外部资源交互的结果。
      {memory}
      你已经完成任务。
      现在请根据上述结果简要总结出你的最终答案。
      直接给出答案。不用再解释或分析你的思考过程。
      """
      

      一些方便编程的工具类

      class Action(BaseModel):
          """结构化定义工具的属性"""
          name: str = Field(description="工具或指令名称")
          args: Optional[Dict[str, Any]] = Field(description="工具或指令参数,由参数名称和参数值组成")
      class MyPrintHandler(BaseCallbackHandler):
          """自定义LLM CallbackHandler,用于打印大模型返回的思考过程"""
          def __init__(self):
              BaseCallbackHandler.__init__(self)
          def on_llm_new_token(
                  self,
                  token: str,
                  *,
                  chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None,
                  run_id: UUID,
                  parent_run_id: Optional[UUID] = None,
                  **kwargs: Any,
          ) -> Any:
              end = ""
              content = token + end
              sys.stdout.write(content)
              sys.stdout.flush()
              return token
          def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
              end = ""
              content = "\n" + end
              sys.stdout.write(content)
              sys.stdout.flush()
              return response
      

      定义Agent

      class MyAgent:
          def __init__(
                  self,
                  llm: BaseChatModel = ChatOpenAI(
                      model="gpt-4-turbo", # agent用GPT4效果好一些,推理能力较强
                      temperature=0,
                      model_kwargs={
                          "seed": 42
                      },
                  ),
                  tools=None,
                  prompt: str = "",
                  final_prompt: str = "",
                  max_thought_steps: Optional[int] = 10,
          ):
              if tools is None:
                  tools = []
              self.llm = llm
              self.tools = tools
              self.final_prompt = PromptTemplate.from_template(final_prompt)
              self.max_thought_steps = max_thought_steps # 最多思考步数,避免死循环
              self.output_parser = PydanticOutputParser(pydantic_object=Action)
              self.prompt = self.__init_prompt(prompt)
              self.llm_chain = self.prompt | self.llm | StrOutputParser() # 主流程的LCEL
              self.verbose_printer = MyPrintHandler()
      	    def __init_prompt(self, prompt):
              return PromptTemplate.from_template(prompt).partial(
                  tools=render_text_description(self.tools),
                  format_instructions=self.__chinese_friendly(
                      self.output_parser.get_format_instructions(),
                  )
              )
          def run(self, task_description):
      		"""Agent主流程"""
      		
              # 思考步数
              thought_step_count = 0
              # 初始化记忆
              agent_memory = ConversationTokenBufferMemory(
                  llm=self.llm,
                  max_token_limit=4000,
              )
              agent_memory.save_context(
                  {"input": "\ninit"},
                  {"output": "\n开始"}
              )
              # 开始逐步思考
              while thought_step_count >>>Round: {thought_step_count}observation}")
                  # 更新记忆
                  self.__update_memory(agent_memory, response, observation)
                  thought_step_count += 1
              if thought_step_count = self.max_thought_steps:
                  # 如果思考步数达到上限,返回错误信息
                  reply = "抱歉,我没能完成您的任务。"
              else:
                  # 否则,执行最后一步
                  final_chain = self.final_prompt | self.llm | StrOutputParser()
                  reply = final_chain.invoke({
                      "task_description": task_description,
                      "memory": agent_memory
                  })
              return reply
          def __step(self, task_description, memory) - Tuple[Action, str]:
              """执行一步思考"""
              response = ""
              for s in self.llm_chain.stream({
                  "task_description": task_description,
                  "memory": memory
              }, config={
                  "callbacks": [
                      self.verbose_printer
                  ]
              }):
                  response += s
              action = self.output_parser.parse(response)
              return action, response
          def __exec_action(self, action: Action) - str:
              observation = "没有找到工具"
              for tool in self.tools:
                  if tool.name == action.name:
                      try:
                          # 执行工具
                          observation = tool.run(action.args)
                      except ValidationError as e:
                          # 工具的入参异常
                          observation = (
                              f"Validation Error in args: {str(e)}, args: {action.args}"
                          )
                      except Exception as e:
                          # 工具执行异常
                          observation = f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
              return observation
          @staticmethod
          def __update_memory(agent_memory, response, observation):
              agent_memory.save_context(
                  {"input": response},
                  {"output": "\n返回结果:\n" + str(observation)}
              )
          @staticmethod
          def __chinese_friendly(string) - str:
              lines = string.split('\n')
              for i, line in enumerate(lines):
                  if line.startswith('{') and line.endswith('}'):
                      try:
                          lines[i] = json.dumps(json.loads(line), ensure_ascii=False)
                      except:
                          pass
              return '\n'.join(lines)
      

      测试

      if __name__ == "__main__":
          my_agent = MyAgent(
              tools=tools,
              prompt=prompt_text,
              final_prompt=final_prompt,
          )
          task = "帮我买24年6月1日早上去上海的火车票"
          reply = my_agent.run(task)
          print(reply)
      

      结果

      第一轮思考

      Agent根据要求,选择了需要使用的Tool,组装了请求参数并完成了调用。

      (还可以多定义一些Tools,比如获取当前位置的,获取今天日期的工具等等,这样这里的查询火车票的参数可以更智能)

      >>>>Round: 0
        "name": "查询火车票",
        "args": {
          "origin": "当前位置",
          "destination": "上海",
          "date": "2024-06-01",
          "departure_time_start": "00:00",
          "departure_time_end": "12:00"
        }
      }
      ----
      Observation:
      [{'train_number': 'G1234', 'origin': '北京', 'destination': '上海', 'departure_time': '2024-06-01 8:00', 'arrival_time': '2024-06-01 12:00', 'price': '100.00', 'seat_type': '商务座'}, {'train_number': 'G5678', 'origin': '北京', 'destination': '上海', 'departure_time': '2024-06-01 18:30', 'arrival_time': '2024-06-01 22:30', 'price': '100.00', 'seat_type': '商务座'}, {'train_number': 'G9012', 'origin': '北京', 'destination': '上海', 'departure_time': '2024-06-01 19:00', 'arrival_time': '2024-06-01 23:00', 'price': '100.00', 'seat_type': '商务座'}]
      
      h4第二轮思考/h4 p根据查询出的车票信息去调用购票的Tool/p pre class="brush:python;toolbar:false">>Round: 1 "name": "购买火车票", "args": { "train_number": "G1234" } } ---- Observation: {'result': 'success', 'message': '购买成功', 'data': {'train_number': 'G1234', 'seat_type': '商务座', 'seat_number': '7-17A'}} h4第三轮思考/h4 pLLM识别到任务已完成,输出了结果/p pre class="brush:python;toolbar:false">>Round: 2 "name": "FINISH" } 购买成功。您已成功购买2024年6月1日早上从北京出发前往上海的火车票,车次为G1234,座位类型为商务座,座位号为7-17A。
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]