python:删掉重复行之drop
目录
一、基本用法
二。示例
drop_duplicates()是Pandas中一个非常实用的方法,用于从DataFrame或Series中删除重复的行或值,只保留第一次出现的记录。
一、基本用法
它的基本语法如下:
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
-
subset:可选参数,指定考虑哪些列来判断重复,默认为所有列。你可以传入一列或多列的列名列表(作为字符串列表)来确定重复性。
-
keep:可选参数,决定如何处理重复项。
- 'first'(默认):保留每个重复组中的第一个出现的行。
- 'last':保留每个重复组中的最后一个出现的行。
- False:删除所有重复的行。
-
inplace:可选参数,如果设置为True,则直接在原DataFrame上进行修改,不返回新的DataFrame。
二。示例
import pandas as pd data = {'Name': ['Alex', 'Bob', 'Clarke', 'Alex', 'Bob'], 'Age': [25, 30, 22, 25, 30], 'City': ['NY', 'LA', 'SF', 'NY', 'LA']} df = pd.DataFrame(data) print("Original DataFrame:") print(df)如果我们想删除所有重复的行(基于所有列),可以这样做:
df_unique = df.drop_duplicates() print("\nDataFrame after removing duplicates (all columns):") print(df_unique)如果我们只想根据'Name'和'Age'列来判断重复,并保留每个重复组的第一个出现:
df_unique_subset = df.drop_duplicates(subset=['Name', 'Age']) print("\nDataFrame after removing duplicates (Name and Age columns):") print(df_unique_subset)如果希望删除所有重复,不保留任何重复行:
df_remove_all_duplicates = df.drop_duplicates(keep=False) print("\nDataFrame after removing all duplicates:") print(df_remove_all_duplicates)
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




