np.quantile()详解

2024-04-19 1066阅读

温馨提示:这篇文章已超过408天没有更新,请注意相关的内容是否还可用!

numpy.quantile

numpy.quantile(a, q, axis=None, out=None, overwrite_input=False, interpolation=‘linear’, keepdims=False)

np.quantile()详解
(图片来源网络,侵删)
import numpy as np
arr = np.array([[0.77395605, 0.43887844, 0.85859792, 0.69736803 ],
                [0.09417735, 0.97562235, 0.7611397 , 0.78606431 ],
                [0.12811363, 0.45038594, 0.37079802, 0.92676499 ]])

axis=0

axis=0,先按列进行升序排列

[[0.09417735, 0.43887844, 0.37079802, 0.69736803 ],
 [0.12811363, 0.45038594, 0.7611397 , 0.78606431 ],
 [0.77395605, 0.97562235, 0.85859792, 0.92676499 ]]
np.quantile(arr, q=0.2, axis=0)
array([0.10775186, 0.44348144, 0.52693469, 0.73284654])
# n=3,q=0.2,n*p = 3*0.2 = 0.6, 0.6不足1按1看,那么在第(1,2)中间进行插值
# 0.4 为 2q
print(0.09417735 + 0.4*(0.12811363-0.09417735))
print(0.43887844 + 0.4*(0.45038594-0.43887844))
print(0.37079802 + 0.4*(0.7611397-0.37079802))
print(0.69736803 + 0.4*(0.78606431-0.69736803))
0.107751862
0.44348144
0.526934692
0.732846542
np.quantile(arr, q=0.4, axis=0)
array([0.12132637, 0.44808444, 0.68307136, 0.76832505])
# n=3,q=0.3,n*p = 3*0.4 = 1.2, 那么在第(1,2)中间进行插值
# 0.8 为 2q
print(0.09417735 + 0.8*(0.12811363-0.09417735))
print(0.43887844 + 0.8*(0.45038594-0.43887844))
print(0.37079802 + 0.8*(0.7611397-0.37079802))
print(0.69736803 + 0.8*(0.78606431-0.69736803))
0.12132637400000001
0.44808444
0.683071364
0.768325054

axis=1

# axis=1,先按行进行升序排列
arr.sort()
arr
array([[0.43887844, 0.69736803, 0.77395605, 0.85859792],
       [0.09417735, 0.7611397 , 0.78606431, 0.97562235],
       [0.12811363, 0.37079802, 0.45038594, 0.92676499]])
np.quantile(arr, q=0.75, axis=1, keepdims=True)
array([[0.79511652],
       [0.83345382],
       [0.5694807 ]])
# n=4,q=0.75,n*p = 4*0.75 = 3, 那么在第(3,4)中间进行插值
# 0.25 为 1-q
print(0.77395605+0.25*(0.85859792-0.77395605))
print(0.78606431+0.25*(0.97562235-0.78606431))
print(0.45038594+0.25*(0.92676499-0.45038594))
0.7951165175
0.83345382
0.5694807024999999
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]