[开源] 基于GRU的时间序列预测模型python代码

2024-04-08 1682阅读

基于GRU的时间序列预测模型python代码分享给大家,记得点赞哦

[开源] 基于GRU的时间序列预测模型python代码

[开源] 基于GRU的时间序列预测模型python代码

#!/usr/bin/env python
# coding: utf-8
import time
time_start = time.time() 
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, GRU
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import r2_score 
from keras import optimizers
from pylab import *
import tensorflow as tf
mpl.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False
# 调用GPU加速
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)
def creat_dataset(dataset, look_back=10):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i: (i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)
dataframe = pd.read_csv('天气.csv',header=0, parse_dates=[0],index_col=0, usecols=[0, 1])#header=0第0行为表头,index_col=0第一列为索引,usecols=[0, 1]选取第一列和第二列
dataset = dataframe.values
dataframe.head(10)
plt.figure(figsize=(10, 4),dpi=150)
dataframe.plot()
plt.ylabel('AQI')
plt.xlabel('time/day')
font = {'serif': 'Times New Roman','size': 20}
plt.rc('font', **font)
plt.show()
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))
train_size = int(len(dataset)*0.8)
test_size = len(dataset)-train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]
look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)
model = Sequential()
model.add(GRU(input_dim=1, units=50, return_sequences=True))
model.add(GRU(input_dim=50, units=100, return_sequences=True))
model.add(GRU(input_dim=100, units=200, return_sequences=True))
model.add(GRU(300, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(100))
model.add(Dense(units=1))
model.add(Activation('relu'))
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam')
model.summary()
len(model.layers)
history = model.fit(trainX, trainY, batch_size=64, epochs=100, validation_split=None, verbose=2)
print('compilatiom time:', time.time()-start)
#get_ipython().run_line_magic('matplotlib', 'notebook')
fig1 = plt.figure(figsize=(10, 3),dpi=150)
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)
testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
print('Train Sccore %.4f RMSE' %(testScore))
testScore = mean_absolute_error(testY, testPredict[:, 0])
print('Train Sccore %.4f MAE' %(testScore))
testScore = r2_score(testY, testPredict[:, 0])
print('Train Sccore %.4f R2' %(testScore))
trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[:] = np.nan
trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredict
testPredictPlot = np.empty_like(dataset)
testPredictPlot[:] = np.nan
testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredict
dataset = scaler.inverse_transform(dataset)
#get_ipython().run_line_magic('matplotlib', 'notebook')
plt.figure(figsize=(10, 4),dpi=150)
plt.title(' Prediction',size=15)
plt.plot(dataset, color='red', linewidth=1.5, line,label='Actual')
plt.plot(testPredictPlot,  color='blue',linewidth=2,line, label='Prediction')
plt.legend()
plt.ylabel('AQI',size=15)
plt.xlabel('time/day',size=15)
plt.show()
time_end = time.time()  
time_sum = time_end - time_start  
print(time_sum)

更多时间序列预测代码获取:时间序列预测算法全集合--深度学习

[开源] 基于GRU的时间序列预测模型python代码

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]