Llama 2: 深入探讨ChatGPT的开源挑战者

2024-03-20 1633阅读

温馨提示:这篇文章已超过423天没有更新,请注意相关的内容是否还可用!

Llama 2:开源挑战者深度解析

摘要

本文深入探讨了Llama 2的能力,并提供了在Google Colab上通过Hugging Face和T4 GPU设置这个高性能大型语言模型的详细指南。Llama 2是由Meta与Microsoft合作开发的开源大型语言模型,旨在重新定义生成式人工智能和自然语言理解的领域。本文还介绍了Llama 2的规模、上下文长度、组查询注意力等创新之处,以及如何通过Hugging Face在Google Colab上运行Llama 2模型。最后,本文总结了Llama 2与GPT模型及其前身Llama 1的区别,以及当前面临的挑战。

Llama 2: 深入探讨ChatGPT的开源挑战者
(图片来源网络,侵删)

1. Llama 2简介

Llama 2是由Meta与Microsoft合作开发的开源大型语言模型,旨在重新定义生成式人工智能和自然语言理解的领域。Llama 2不仅是一个在数TB数据上训练的统计模型,更是一种哲学的体现,强调开源方法作为人工智能发展的基础,特别是在生成式人工智能领域。

2. 技术深度解析

2.1 训练架构

Llama 2使用自动回归变压器架构进行预训练,并在人类反馈的强化学习(Reinforcement Learning with Human Feedback, RLHF)的基础上进行微调,以更好地符合人类行为和偏好。

2.2 预训练与数据效率

Llama 2的预训练创新在于其预训练制度。模型从其前身Llama 1中汲取灵感,但引入了几个关键的改进来提升其性能。特别是,总训练令牌数增加了40%,上下文长度扩大了两倍。此外,模型利用分组查询注意力(Grouped Query Attention, GQA)来放大推理的可扩展性。

2.3 监督微调与强化学习

Llama-2-chat已经通过监督微调(Supervised Fine-Tuning, SFT)和强化学习与人类反馈(RLHF)进行了严格的微调。在RLHF框架中,SFT是一个重要组成部分,用于调整模型的响应,使其更符合人类的偏好和期望。

3. 设置Llama 2

3.1 从Meta Git仓库下载

  1. 访问Meta官方网站,点击“下载模型”。
    1. 填写详细信息,阅读并接受条款和条件。
    1. 提交表格后,您将收到来自Meta的电子邮件,其中包含从其git仓库下载模型的链接。
    1. 执行download.sh脚本。

3.2 从Hugging Face下载

  1. 在获得Meta的访问权限后,前往Hugging Face。
    1. 选择所需的模型并提交访问请求。
    1. 在1-2天内,您将收到“授予访问”的电子邮件。
    1. 在Hugging Face账户的“设置”中创建访问令牌。

4. 在Google Colab上运行Llama 2

4.1 安装包

!pip install transformers
!huggingface-cli login

4.2 导入必要的Python库

from transformers import AutoTokenizer
import transformers
import torch

4.3 初始化模型和分词器

model = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model)

4.4 设置管道

pipeline = transformers.pipeline(
    "text-generation",
        model=model,
            torch_dtype=torch.float16,
                device_map="auto")
                ```
### 4.5 生成文本序列
```python
sequences = pipeline(
    'Who are the key contributors to the field of artificial intelligence?\n',
        do_sample=True,
            top_k=10,
                num_return_sequences=1,
                    eos_token_id=tokenizer.eos_token_id,
                        max_length=200)
                        for seq in sequences:
                            print(f"Result: {seq['generated_text']}")
                            ```
## 5. Llama 2的特点
### 5.1 规模多样性
Llama 2提供不同参数的多种模型选项,规模从70亿到7亿参数不等,为不同的计算需求提供多种配置。
### 5.2 增强的上下文长度
模型的上下文长度比Llama 1增加了4K个令牌,使其能够保留更多信息,从而提高其理解和生成更复杂和广泛内容的能力。
### 5.3 组查询注意力(GQA)
该架构使用GQA的概念,通过缓存之前的令牌对来加速注意力计算过程。这有效地提高了模型的推理可扩展性,从而提高其可访问性。
## 6. 结论
本文介绍了如何在Google Colab上通过Hugging Face支持设置Llama 2模型以进行文本生成。Llama 2的性能得益于从自动回归变压器架构到强化学习与人类反馈(RLHF)的一系列先进技术。凭借高达700亿个参数和诸如Ghost Attention等功能,该模型在某些领域超越了当前行业标准,并且由于其开源性质,为自然语言理解和生成式人工智能的新时代铺平了道路。
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]