数据结构——堆的应用 堆排序详解

2024-03-15 1751阅读

温馨提示:这篇文章已超过384天没有更新,请注意相关的内容是否还可用!

💞💞 前言

hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹

数据结构——堆的应用 堆排序详解

💥个人主页:大耳朵土土垚的博客

💥 所属专栏:数据结构学习笔记

💥对于数据结构顺序表、链表、堆有疑问的都可以在上面数据结构的专栏进行学习哦~

有问题可以写在评论区或者私信我哦~

在土土的上篇博客二叉树堆的介绍与实现中,我们发现测试代码是升序;今天我们就来分析堆的重要应用——**堆排序**🎉🎉。

升序实现如下:

#include"Heap.h"
int main()
{
	Heap hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i  

数据结构——堆的应用 堆排序详解

详情可在土土的博客数据结构——lesson7二叉树堆的介绍与实现中查看🥳🥳

一、堆排序(基础版)

既然是堆排序,那我们首先肯定得有一个堆,这里土土就可以偷个懒将上篇博客中实现的堆代码copy一下🥰🥰

堆的实现

#include"Heap.h"
//堆的初始化
void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
// 堆的销毁
void HeapDestroy(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
//交换函数
void Swap(HPDataType* a,HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}
//堆向下调整算法
void AdjustDown(HPDataType* a, int n,int parent)
{
	//找到较小的孩子节点
	int child = parent * 2 + 1;
	
	//向下调整
	while (child  a[child + 1])
		{
			child++;
		}
		if (a[child]  0)
	{
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
		
	}
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	//判断容量
	if (hp->size == hp->capacity)//容量满了扩容
	{
		int newcapacity = hp->capacity == 0 ? 0 : 2 * hp->capacity;
		HPDataType* new = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (new == NULL)
		{
			perror("realloc fail");
			return;
		}
		hp->a = new;
		hp->capacity = newcapacity;
	}
	//尾插
	hp->a[hp->size] = x;
	hp->size++;
	//向上调整算法
	AdjustUp(hp->a,hp->size-1);
}
// 堆的删除,删除堆顶元素
void HeapPop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	hp->size--;
	//向下调整算法
	AdjustDown(hp->a, hp->size, 0);
}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	return hp->a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}

当然在使用这些函数时要记得先声明一下,这里我们都放到一个头文件Heap.h中

Heap.h

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include
#include
#include
typedef int HPDataType;
//构建一个结构体封装堆
typedef struct Heap
{
	HPDataType* a;//数组顺序表
	int size;//堆元素个数
	int capacity;//数组空间
}Heap;
//以下是实现堆的函数
// 堆的初始化
void HeapInit(Heap* hp);
// 堆的销毁
void HeapDestroy(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

使用时只需包含该头文件即可

#include"Heap.h"

堆排序

给定一个数组a[ ] = {7,8,3,5,1,9,5,4},我们需要利用上面的堆来将它进行排序

🤩🤩思路:

①我们首先需要将数组中的元素插入堆中(利用HeapPush函数),

💫前面我们已经学习过堆插入函数,它里面利用堆向上调整算法会自动将插入的数据调整为一个堆(我们实现的是小堆);

②然后我们需要获取堆顶元素(也就是小堆中最小的元素),利用HeapTop函数即可;

③获取最小元素后我们就需要获取次小元素,先利用堆的删除函数(HeapPop函数),将堆顶元素(也就是小堆中最小的元素)删除;

💞删除函数中堆向下调整算法又会将剩余元素调整为小堆,此时堆顶元素就是删除一个元素后最小的元素;

④将删除后的元素重新拷贝回数组a中;

⑤循环②③两步直到全部排序成功。

代码实现如下:

 #include"Heap.h"
void HeapSort(int* a,int size)
{
	Heap hp;
	HeapInit(&hp);
	//将a中元素插入堆中
	for (int i = 0; i  

🥳🥳结果如下:

排序前:

数据结构——堆的应用 堆排序详解

排序后:

数据结构——堆的应用 堆排序详解

💥💥上述堆排序的实现尽管能够实现排序,但是…我们发现如果没有提前实现堆或者准备好堆的代码,我们是没办法实现的,而且我们需要来回拷贝数据,空间复杂度较大。

🥰🥰这里就需要介绍下面简便版堆排序啦~

二、堆排序(简便版)

在土土的数据结构学习笔记数据结构——lesson7二叉树堆的介绍与实现中,详细介绍了堆向上调整算法与堆向下调整算法,接下来我们就可以利用这两个函数来实现堆以及堆的排序🥳🥳

(1)利用堆向上或向下调整算法实现堆

堆向上调整算法实现

//向上调整算法
void AdjustUp(HPDataType* a,int child)
{
	//找到双亲节点
	int parent = (child - 1) / 2;
	//向上调整
	while (child > 0)
	{
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
		
	}
}

数组a[ ] = {7,8,3,5,1,9,5,4},我们可以看成一个二叉树:

数据结构——堆的应用 堆排序详解

只需要从第二个数8开始每次读取一个数据都向上调整为堆,那么读完整个数组就可以得到一个堆啦~🥰🥰

数据结构——堆的应用 堆排序详解

数据结构——堆的应用 堆排序详解

数据结构——堆的应用 堆排序详解

数据结构——堆的应用 堆排序详解

//从第二个数据开始向上调整建堆
for (int i = 1; i  
 
 

🤩🤩之前基础版排序是又开辟了一个空间来存放a中的数据,排成堆后又每次选取最小的元素拷贝回a中,不仅麻烦而且会增加空间的使用;

所以简便版排序便直接将a看成一个二叉树利用向上调整算法直接成堆,不需要开辟额外的空间。

堆向下调整算法实现

🥰🥰类似于向上调整算法的实现,所不同的是开始调整的位置不再从第二个数开始,而是从最后一个非叶子节点开始向下调整:

数据结构——堆的应用 堆排序详解

调整完了再依次往前找到前一个非叶子节点(下标是元素个数size-2再除2)重复向下调整即可;

🥳🥳使用向下调整的时间复杂度较向上调整小,所以我们这里选择用向下调整

代码如下:

//堆向下调整算法
for (int i = (size-2 )/ 2 ; i >= 0; i--)
{
	AdjustDown(a, size, i);
}

结果如下:

数据结构——堆的应用 堆排序详解

数据结构——堆的应用 堆排序详解

可以发现已经将其调整为一个小堆了🥳🥳

(2)利用堆向下调整算法排序

那我们应该怎么将堆中的元素排序呢?

🥳🥳这就要利用堆向下调整算法了

思路🥳🥳

①交换首尾元素,将堆中最小的元素(首元素)换到尾部;

②将交换后的尾部元素忽略,剩余元素利用堆向下调整算法(除头外左右子树都是堆)调整为堆;

数据结构——堆的应用 堆排序详解

③重复②直到全部排完,得到降序数组:

数据结构——堆的应用 堆排序详解

代码如下:

//排序
int end = size-1;//堆底元素下标
while (end)
{
	Swap(&a[0], &a[end]);
	AdjustDown(a, end, 0);
	end--;
}

🤩🤩Swap函数在这里:

//交换函数
void Swap(HPDataType* a, HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}

(3)完整实现🥳🥳

void HeapSort(int* a,int size)
{
	//堆向下调整算法
	 for (int i = (size-1 )/ 2 ; i >= 0; i--)
	{
		AdjustDown(a, size, i);
	}
	
	//排序
	int end = size-1;//堆底元素下标
	while (end)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	HeapSort(a, 8);
	return 0;
}

结果如下:

数据结构——堆的应用 堆排序详解

✨✨思考:如果我们要排升序应该利用什么堆呢?相信大家通过上面的学习与理解都知道应该用大堆对不对?具体代码大家可以参考上面小堆实现降序来自己试着写一写哦~

三、结语

以上就是堆的应用——堆排序啦~,我们发现可以不用写堆的实现代码就可以将一个数组排成堆🥳🥳,关键在于堆向上调整与向下调整算法的理解与运用,大家都学废了吗 ,💞💞 完结撒花 ~🎉🎉🎉

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]