【个人学习笔记】概率论与数理统计知识梳理【六】
温馨提示:这篇文章已超过382天没有更新,请注意相关的内容是否还可用!
文章目录
- 第六章 样本及抽样分布
- 一、随机抽样
- 二、直方图与箱线图
- 2.1 直方图
- 2.2 箱线图
- 三、抽样分布
- 总结
一、随机抽样
在概率论中,我们往往是在已知随机变量的分布的情况下去研究它的数字特征之类的。而在现实中的复杂的随机现象,我们并不能一开始就知道其分布,所以数理统计研究的主要工作就是如何通过对随机变量进行观察统计分析的方法,对其分布做出推断。
所以我们的着眼点不能再是概率分布了,而应该回到更早的随机试验随机变量的概念重新出发。首先数理统计都是研究数的,对于定性描述的随机变量也都可以通过定量化变成数,这一点是毋庸置疑的,但是明确这一点是必要的。
首先是统计分析的几个基本概念,从小学开始学统计,这几个概念也是反反复复接触了。总体:试验中所有的观察值称为总体。个体:总体包含的每个具体的观察值称为个体。容量:总体中包含的个体数量称为容量。容量有限的为有限总体,无限的为无限总体。总体的观察值就是随机变量的取值,总体对应着一个随机变量,数理统计对总体的研究就是对其对应的随机变量的研究。样本:从总体中抽取一部分个体,这些个体就叫样本。在相同条件下对总体进行独立重复的多次观察得到一系列个体就称为简单随机样本,从获取方式可以知道它的性质就是独立同分布。对于无限总体,抽取样本不会影响其分布,所以可以直接采用不放回抽样获取简单随机样本;而有限总体采用放回抽样也能获得简单随机样本,但是操作麻烦,当总体容量远大于样本容量时,可以用不放回抽样来近似放回抽样。
二、直方图与箱线图
2.1 直方图
好家伙,这东西着实没什么可讲,就当个可查阅词典,把直方图的画法过一遍吧
频率直方图是一种描绘样本各个区间数据发生频率的图形。作图之前先对样本做简单统计,得到最大值与最小值,再根据想要划分的区间的多少来确定组距,最后计算落在每个区间内的数据的频率,根据频率与组距的比值作出图像。如下图:
所以频率直方图中矩形的面积才是频率,而不是高度。
2.2 箱线图
样本分位数:样本的p分位数(0

