再见Pandas,又一数据处理神器!

2024-02-29 1234阅读

温馨提示:这篇文章已超过388天没有更新,请注意相关的内容是否还可用!

cuDF (Pandas GPU 平替),用于加载、连接、聚合、过滤和其他数据操作。

cuDF介绍

cuDF是一个基于Apache Arrow列内存格式的Python GPU DataFrame库,用于加载、连接、聚合、过滤和其他数据操作。cuDF还提供了类似于pandas的API。

再见Pandas,又一数据处理神器!

GitHub:https://github.com/rapidsai/cudf

Documentation:https://docs.rapids.ai/api/cudf/stable

技术交流与源码获取

技术要学会交流、分享,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

技术交流、代码、数据获取方式如下

方式①、添加微信号:dkl88194,备注:来自CSDN + 消费者数据

方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:消费者数据

资料1

再见Pandas,又一数据处理神器!

资料2

我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、代码、案例应有尽有,所有的算法模型都是按照这样的节奏进行表述,所以是一套完完整整的案例库。

很多初学者是有这么一个痛点,就是案例,案例的完整性直接影响同学的兴致。因此,我整理了 100个最常见的算法模型,在你的学习路上助推一把!

再见Pandas,又一数据处理神器!

相关框架介绍

cuDF: cuDF是一个Python GPU DataFrame库,它基于Apache Arrow的列式内存格式,用于加载、连接、聚合、过滤和以类似pandas的DataFrame风格API操纵表格数据。它允许数据工程师和数据科学家通过类似于pandas的API轻松加速其工作流程,而无需深入研究CUDA编程的细节。cuDF的设计旨在在GPU上处理大规模数据集,提供了对数据处理任务的高性能支持。

Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。它允许用户以更大规模处理数据,充分发挥计算资源,而无需对代码进行大规模更改。

Dask-cuDF: Dask-cuDF在需要的情况下扩展Dask,以允许其DataFrame分区使用cuDF GPU DataFrame而不是Pandas DataFrame进行处理。例如,当调用dask_cudf.read_csv(...)时,集群的GPU通过调用cudf.read_csv()来执行解析CSV文件的工作。这使得在GPU上利用cuDF的高性能数据处理能力,从而加速大规模数据处理任务。

cuDF和Pandas比较

cuDF是一个DataFrame库,它与Pandas API密切匹配,但直接使用时并不是Pandas的完全替代品。在API和行为方面,cuDF和Pandas之间存在一些差异。以下是cuDF和Pandas之间的相似之处和差异的对比:

支持的操作:

cuDF支持许多与Pandas相同的数据结构和操作,包括Series、DataFrame、Index等,以及它们的一元和二元操作、索引、过滤、连接、分组和窗口操作等。

数据类型:

cuDF支持Pandas中常用的数据类型,包括数值、日期时间、时间戳、字符串和分类数据类型。此外,cuDF还支持用于十进制、列表和“结构”值的特殊数据类型。

缺失值:

与Pandas不同,cuDF中的所有数据类型都是可为空的,意味着它们可以包含缺失值(用cudf.NA表示)。

迭代:

在cuDF中,不支持对Series、DataFrame或Index进行迭代。因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。

结果排序:

默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。与Pandas相比,需要显式传递sort=True或在尝试匹配Pandas行为时启用mode.pandas_compatible选项。

浮点运算:

cuDF利用GPU并行执行操作,因此操作的顺序不总是确定的。这影响浮点运算的确定性,因为浮点运算是非关联的。在比较浮点结果时,建议使用cudf.testing模块提供的函数,允许您根据所需的精度比较值。

列名:

与Pandas不同,cuDF不支持重复的列名。最好使用唯一的字符串作为列名。

没有真正的“object”数据类型:

与Pandas和NumPy不同,cuDF不支持“object”数据类型,用于存储任意Python对象的集合。

.apply()函数限制:

cuDF支持.apply()函数,但它依赖于Numba对用户定义的函数(UDF)进行JIT编译并在GPU上执行。这可以非常快速,但对UDF中允许的操作施加了一些限制。

何时使用cuDF和Dask-cuDF

cuDF:
  • 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。

  • 当数据量不大,可以在单个GPU内存中处理时,cuDF提供了对单个GPU上高性能数据操作的支持。

    Dask-cuDF:
    • 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。

    • Dask-cuDF允许您在分布式GPU环境中进行高性能的数据处理,特别是当数据集太大,无法容纳在单个GPU内存中时。

      cuDF代码案例

      import os
      import pandas as pd
      import cudf
      # Creating a cudf.Series
      s = cudf.Series([1, 2, 3, None, 4])
      # Creating a cudf.DataFrame
      df = cudf.DataFrame(
          {
              "a": list(range(20)),
              "b": list(reversed(range(20))),
              "c": list(range(20)),
          }
      )
      # read data directly into a dask_cudf.DataFrame with read_csv
      pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]})
      gdf = cudf.DataFrame.from_pandas(pdf)
      gdf
      # Viewing the top rows of a GPU dataframe.
      ddf.head(2)
      # Sorting by values.
      df.sort_values(by="b")
      # Selecting a single column
      df["a"]
      # Selecting rows from index 2 to index 5 from columns ‘a’ and ‘b’.
      df.loc[2:5, ["a", "b"]]
      # Selecting via integers and integer slices, like numpy/pandas.
      df.iloc[0:3, 0:2]
      # Selecting rows in a DataFrame or Series by direct Boolean indexing.
      df[df.b > 15]
      # Grouping and then applying the sum function to the grouped data.
      df.groupby("agg_col1").agg({"a": "max", "b": "mean", "c": "sum"})
      
VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]