【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

2024-07-21 1478阅读

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)


一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。

本次研究三个内容,分别是回归预测,二分类预测和多分类预测

参考链接:

lightgbm原理参考链接:

训练过程评价指标metric函数参考链接:

lightgbm参数介绍参考链接:

lightgbm调参参考链接:


二、回归预测(多输入单输出)

1.数据设置

数据(103个样本,7输入1输出)

2.预测结果

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

[   1]  train rmse 0.208872
[   2]  train rmse 0.203687
[   3]  train rmse 0.202175
[   4]  train rmse 0.200801
[   5]  train rmse 0.199554
[   6]  train rmse 0.196124
[   7]  train rmse 0.193003
[   8]  train rmse 0.192100
[   9]  train rmse 0.189259
[  10]  train rmse 0.186576
............
[ 490]  train rmse 0.052932
[ 491]  train rmse 0.052870
[ 492]  train rmse 0.052847
[ 493]  train rmse 0.052830
[ 494]  train rmse 0.052820
[ 495]  train rmse 0.052771
[ 496]  train rmse 0.052689
[ 497]  train rmse 0.052619
[ 498]  train rmse 0.052562
[ 499]  train rmse 0.052506
[ 500]  train rmse 0.052457
bestIteration: 500
训练集数据的R2为:0.94018
测试集数据的R2为:0.87118
训练集数据的MAE为:1.365
测试集数据的MAE为:2.3607
训练集数据的MBE为:-0.079848
测试集数据的MBE为:-1.0132

5.特征变量敏感性分析

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

三、分类预测(多输入单输出二分类)

1.数据设置

数据(357个样本,12输入1输出)

2.预测结果

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='binary_error';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05;
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=0;

4.训练过程

[   0]  train binary_error 0.020833
[   1]  train binary_error 0.020833
[   2]  train binary_error 0.020833
[   3]  train binary_error 0.020833
[   4]  train binary_error 0.020833
[   5]  train binary_error 0.020833
[   6]  train binary_error 0.020833
............
[ 191]  train binary_error 0.000000
[ 192]  train binary_error 0.000000
[ 193]  train binary_error 0.000000
[ 194]  train binary_error 0.000000
[ 195]  train binary_error 0.000000
[ 196]  train binary_error 0.000000
[ 197]  train binary_error 0.000000
[ 198]  train binary_error 0.000000
[ 199]  train binary_error 0.000000
bestIteration: 200

5.特征变量敏感性分析

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

四、分类预测(多输入单输出多分类)

1.数据设置

数据(357个样本,12输入1输出。4分类)

2.预测结果

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='multi_error';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05;
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=0;

4.训练过程

[   0]  train multi_error 0.112500
[   1]  train multi_error 0.066667
[   2]  train multi_error 0.066667
[   3]  train multi_error 0.066667
[   4]  train multi_error 0.062500
[   5]  train multi_error 0.058333
[   6]  train multi_error 0.054167
[   7]  train multi_error 0.054167
[   8]  train multi_error 0.058333
[   9]  train multi_error 0.058333
[  10]  train multi_error 0.054167
[  11]  train multi_error 0.054167
............
[ 190]  train multi_error 0.000000
[ 191]  train multi_error 0.000000
[ 192]  train multi_error 0.000000
[ 193]  train multi_error 0.000000
[ 194]  train multi_error 0.000000
[ 195]  train multi_error 0.000000
[ 196]  train multi_error 0.000000
[ 197]  train multi_error 0.000000
[ 198]  train multi_error 0.000000
[ 199]  train multi_error 0.000000
bestIteration: 200

5.特征变量敏感性分析

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

五、代码获取

CSDN后台私信回复“70期”即可获取下载方式。

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]