机器学习|决策树|Gini指数和熵的区别|简单示例

07-21 779阅读

如是我闻: 在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。

机器学习|决策树|Gini指数和熵的区别|简单示例
(图片来源网络,侵删)

Gini指数

Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:

G i n i = 1 − ∑ i = 1 n p i 2 Gini = 1 - \sum_{i=1}^n p_i^2 Gini=1−i=1∑n​pi2​

其中 p i p_i pi​ 是类别 i i i 在集合中的比例。

熵(Entropy)

熵是衡量数据集随机性的指标,同样用于评估数据集的不纯度。熵越高,数据的不确定性越大。其计算公式为:

E n t r o p y = − ∑ i = 1 n p i log ⁡ 2 ( p i ) Entropy = -\sum_{i=1}^n p_i \log_2(p_i) Entropy=−i=1∑n​pi​log2​(pi​)

其中 p i p_i pi​ 是类别 i i i 在集合中的比例。

好的,相信你一定纳闷他们到低是来干什么用的,下面我们来看一个生活化的例子——小朋友分水果——来解释Gini指数和熵(Entropy)如何在决策树中帮助选择分裂属性。

场景描述

假设我们在幼儿园有一个水果分发活动,有20个小朋友参加,分发的水果有苹果和香蕉。以下是小朋友的喜好列表:

  • 10个小朋友喜欢苹果
  • 10个小朋友喜欢香蕉

    我们的目标是通过询问一个问题(属性的选择),尽可能准确地分辨出哪些小朋友喜欢苹果,哪些喜欢香蕉。

    选择属性

    假设我们可以询问的问题有两个:

    1. “你是否喜欢吃甜食?”
    2. “你是男孩还是女孩?”

    情况一

    假设第一个问题“你是否喜欢吃甜食?”的回答如下:

    • 是:12个小朋友(6喜欢苹果,6喜欢香蕉)
    • 否:8个小朋友(4喜欢苹果,4喜欢香蕉)

      计算Gini指数

      G i n i ( 是 ) = 1 − ( ( 6 12 ) 2 + ( 6 12 ) 2 ) = 0.5 Gini(是) = 1 - ( (\frac{6}{12})^2 + (\frac{6}{12})^2 ) = 0.5 Gini(是)=1−((126​)2+(126​)2)=0.5

      G i n i ( 否 ) = 1 − ( ( 4 8 ) 2 + ( 4 8 ) 2 ) = 0.5 Gini(否) = 1 - ( (\frac{4}{8})^2 + (\frac{4}{8})^2 ) = 0.5 Gini(否)=1−((84​)2+(84​)2)=0.5

      G i n i ( 总体 ) = 12 20 × 0.5 + 8 20 × 0.5 = 0.5 Gini(总体) = \frac{12}{20} \times 0.5 + \frac{8}{20} \times 0.5 = 0.5 Gini(总体)=2012​×0.5+208​×0.5=0.5

      计算熵

      E n t r o p y ( 是 ) = − ( 6 12 log ⁡ 2 6 12 + 6 12 log ⁡ 2 6 12 ) = 1 Entropy(是) = -(\frac{6}{12} \log_2 \frac{6}{12} + \frac{6}{12} \log_2 \frac{6}{12}) = 1 Entropy(是)=−(126​log2​126​+126​log2​126​)=1

      E n t r o p y ( 否 ) = − ( 4 8 log ⁡ 2 4 8 + 4 8 log ⁡ 2 4 8 ) = 1 Entropy(否) = -(\frac{4}{8} \log_2 \frac{4}{8} + \frac{4}{8} \log_2 \frac{4}{8}) = 1 Entropy(否)=−(84​log2​84​+84​log2​84​)=1

      E n t r o p y ( 总体 ) = 12 20 × 1 + 8 20 × 1 = 1 Entropy(总体) = \frac{12}{20} \times 1 + \frac{8}{20} \times 1 = 1 Entropy(总体)=2012​×1+208​×1=1

      这个问题没有很好地分离出喜好不同的小朋友,因为不论是使用Gini指数还是熵,分裂后的子集依然保持了原始分布的比例(1:1苹果与香蕉的比例)。

      情况二

      现在假设第二个问题“你是男孩还是女孩?”的回答分布为:

      • 男孩:10个小朋友(9喜欢苹果,1喜欢香蕉)
      • 女孩:10个小朋友(1喜欢苹果,9喜欢香蕉)

        让我们来计算在第二个问题“你是男孩还是女孩?”的情况下,使用Gini指数和熵的具体数值,并展示这个问题如何更有效地帮助分辨小朋友的水果喜好。

        计算Gini指数

        首先计算每个分支的Gini指数:

        G i n i ( 男孩 ) = 1 − ( ( 9 10 ) 2 + ( 1 10 ) 2 ) = 1 − ( 0.81 + 0.01 ) = 0.18 Gini(男孩) = 1 - ( (\frac{9}{10})^2 + (\frac{1}{10})^2 ) = 1 - (0.81 + 0.01) = 0.18 Gini(男孩)=1−((109​)2+(101​)2)=1−(0.81+0.01)=0.18

        G i n i ( 女孩 ) = 1 − ( ( 1 10 ) 2 + ( 9 10 ) 2 ) = 1 − ( 0.01 + 0.81 ) = 0.18 Gini(女孩) = 1 - ( (\frac{1}{10})^2 + (\frac{9}{10})^2 ) = 1 - (0.01 + 0.81) = 0.18 Gini(女孩)=1−((101​)2+(109​)2)=1−(0.01+0.81)=0.18

        总体Gini指数为:

        G i n i ( 总体 ) = 10 20 × 0.18 + 10 20 × 0.18 = 0.18 Gini(总体) = \frac{10}{20} \times 0.18 + \frac{10}{20} \times 0.18 = 0.18 Gini(总体)=2010​×0.18+2010​×0.18=0.18

        计算熵

        接下来计算每个分支的熵:

        E n t r o p y ( 男孩 ) = − ( 9 10 log ⁡ 2 9 10 + 1 10 log ⁡ 2 1 10 ) = − ( 9 10 × ( − 0.152 ) + 1 10 × 3.321 ) = 0.469 Entropy(男孩) = -(\frac{9}{10} \log_2 \frac{9}{10} + \frac{1}{10} \log_2 \frac{1}{10})=-(\frac{9}{10} \times (-0.152) + \frac{1}{10} \times 3.321) = 0.469 Entropy(男孩)=−(109​log2​109​+101​log2​101​)=−(109​×(−0.152)+101​×3.321)=0.469

        E n t r o p y ( 女孩 ) = − ( 1 10 log ⁡ 2 1 10 + 9 10 log ⁡ 2 9 10 ) = 0.469 ( 同样的计算过程 ) Entropy(女孩) = -(\frac{1}{10} \log_2 \frac{1}{10} + \frac{9}{10} \log_2 \frac{9}{10})=0.469(同样的计算过程) Entropy(女孩)=−(101​log2​101​+109​log2​109​)=0.469(同样的计算过程)

        总体熵为:

        E n t r o p y ( 总体 ) = 10 20 × 0.469 + 10 20 × 0.469 = 0.469 Entropy(总体) = \frac{10}{20} \times 0.469 + \frac{10}{20} \times 0.469 = 0.469 Entropy(总体)=2010​×0.469+2010​×0.469=0.469

        比较和结论

        与第一个问题相比(在那里我们得到了总体Gini指数为0.5和总体熵为1),第二个问题的Gini指数和熵都明显降低,说明这个问题能更有效地区分小朋友对水果的喜好。降低的Gini指数和熵值表示在分裂后的子集纯度更高,每组中几乎都是喜欢同一种水果的小朋友。因此,这个属性(性别)更适合用来划分数据,达到更高的预测准确性和效率。

        但是我还是想说,实际应用中他俩没有什么显著的区别

        非常的有品

        以上

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]