文献阅读:tidyomics 生态系统:增强组学数据分析

07-21 1941阅读

文献介绍

文献阅读:tidyomics 生态系统:增强组学数据分析

文献题目: The tidyomics ecosystem: enhancing omic data analyses

研究团队: Stefano Mangiola(澳大利亚沃尔特和伊丽莎·霍尔医学研究所)、Michael I. Love(美国北卡罗来纳大学教堂山分校)、Anthony T. Papenfuss(澳大利亚沃尔特和伊丽莎·霍尔医学研究所)

发表时间: 2024-06-14

发表期刊: Nature Methods

影响因子: 36.1

DOI: 10.1038/s41592-024-02299-2

摘要

组学数据的增长给数据操作、分析和整合带来了不断变化的挑战。为了应对这些挑战,Bioconductor 提供了一个广泛的社区驱动的生物数据分析平台。同时,tidy R 编程提供了革命性的数据组织和操作标准。在这里,作者展示了 tidyomics 软件生态系统,将 Bioconductor 与 tidy R 范式连接起来。该生态系统旨在简化组学分析、简化学习并鼓励跨学科合作。作者通过分析人类细胞图谱中的 750 万个外周血单核细胞,涵盖六个数据框架和十个分析工具,证明了 tidyomics 的有效性。

前言

基因组学、表观基因组学、转录组学、空间分析和多组学的高通量技术彻底改变了生物医学研究,为数据操作、探索、分析、整合和解释带来了机遇和挑战。为了应对这些挑战,科学界开发了用于数据组织和专门操作的面向对象框架。

为了应对软件领域的复杂性,Bioconductor 已成为用于组学数据分析的首要 R 软件存储库和平台。Bioconductor 为数据处理工作流程和统计分析提供国际标准化和互操作性。凭借广泛的注释资源和链接元数据的标准化数据格式,Bioconductor 促进了可重复性和社区驱动的开源开发。

最近,tidy R 范式和 tidyverse 软件生态系统通过优先考虑直观的数据表示和操作而不是复杂的数据结构和语法,改变了基于 R 的数据科学。该范式使用表格来表示数据,将变量作为列,将观察结果作为行。它通过使用标准化和自然语言词汇的管道中连接的操作来简化数据操作。tidyverse 的组件被列为最常下载的 R 包,并在全球数据科学和生物信息学项目中广泛教授。

Bioconductor 在很大程度上仍然独立于 tidyverse 生态系统。通过提供标准数据格式和分析的 tidy 接口,在这两个生态系统之间架起一座桥梁,将使研究人员能够将注意力从技术挑战转移到生物学问题。此外,利用数据科学教育标准将降低分析不同组学数据的进入门槛。

研究结果

1. tidyomics 生态系统概览

在这篇 Brief Communication 中,作者介绍了 tidyomics,这是一个可互操作的软件生态系统,它将 Bioconductor 和其他组学分析框架(例如 Seurat)与 tidyverse 连接起来。该生态系统可以通过 Bioconductor 中提供的单个 meta-package 进行安装。tidyomics 包括三个新软件包:tidySummarizedExperiment、tidySingleCellExperiment、tidySpatialExperiment,以及五个公开可用的 R 软件包:plyranges、nullranges、tidyseurat、tidybulk、tidytof。重要的是,虽然 tidyomics 以整齐的格式表示组学数据(Fig. 1a),但它保持原始数据容器和方法不变,确保与现有软件的兼容性、可维护性和长期 Bioconductor 支持。

文献阅读:tidyomics 生态系统:增强组学数据分析 Fig. 1 tidyomics 生态系统概览

a. 数据接口图显示了不同数据容器的一致数据表示。六边形图标代表每个数据容器的兼容 R 包。

b. R/Bioconductor 中丰富数据对象的景观,以 tidyomics 动词作为连接这些对象的路径。数据容器由圆角矩形和将它们连接为白框的函数表示。SPE, SpatialExperiment; SCE, SingleCellExperiment; SE, SummarizedExperiment。

c. 左:简洁的 tidy 语法与复杂的结果和输入数据容器之间的对比。右图:示例工作流程包括数据、生物分析、数据/结果操作和总结、不同的数据结构、可视化和结果图。粉色区域包括跨组学共享语法的基础设施。

d. tidyomics 社区的参与是多方面的,以一套专为简化数据分析而定制的 R 包为中心。

在 Bioconductor 中,GenomicRanges 将基因组特征组织为行中的范围(例如,基因、外显子、单核苷酸多态性 (SNP) 和 CpGs),并与列中的变量(例如,范围宽度)链接(如 BED 格式)。plyranges 将 dplyr 动词扩展到 GenomicRanges 对象,促进范围整合、重叠分析、汇总和可视化。plyranges 与 nullranges 交互以匹配或 bootstrapping 范围以执行重叠富集分析。

在 Bioconductor 中,SummarizedExperiment 和 SingleCellExperiment 将转录丰度组织为与 metadata 链接的特征/基因样本矩阵。tidyomics 通过提供一个表格界面来概括变量的概念,其中观察值(例如,gene-sample pair)作为行,变量(例如,abundance 和 metadata)作为列。这种方法可以使用 tidyverse 进行复杂的过滤、汇总、分析和可视化。tidybulk 为 bulk 和 pseudobulk 数据提供了整洁且模块化的分析管道。

Bioconductor 的 flowCore 软件包将来自质量、流式和基于序列的细胞计数的数据组织在逐个特征矩阵中,并促进数据操作。tidytof 将 flowCore 与 tidyverse、tidySingleCellExperiment 和 tidySummarizedExperiment 连接起来。

Bioconductor 的 SpatialExperiment 组织来自基于细胞或像素的技术的数据,例如 10x Genomics Xenium、CosMX、Mibi 和 MERSCOPE。tidySpatialExperiment 为具有空间坐标的数据提供了一个 tidy 接口,并提供了专门的操作,例如基于几何和手绘形状的门控。

tidyomics 是一个统一且可互操作的组学技术软件生态系统,涵盖多个组学分析框架。通过转换和连接操作,功能网络连接所有数据容器(Fig. 1b)。这种统一的方法有助于无缝容器切换,减少对由特定领域语法创建的特定框架的依赖,并有效地增加所用工具的范围(Fig. 1c)。

2. tidyomics 生态系统的表现

为了证明 tidyomics 的实用性和可扩展性,作者测试了 750 万个血细胞的外周免疫系统的性别转录组差异。作者的生态系统无缝地连接了六个数据和分析框架(Fig. 2a),展示了一致使用 tidy R 语法而不是混合 base R、DuckDB、Seurat、SingleCellExperiment、SummarizedExperiment、DGEList、GenomicRanges 语法的好处。预处理后,作者使用多级差异表达模型测试了 26 种免疫细胞类型的 15,494 个 pseudobulk 样本(Fig. 2b)。作者发现 T CD4 naive cells、T effectors cells、B memory cells 在性别之间变化最大(Fig. 2c)。大多数与性别相关的转录变化(不包括性染色体)是细胞类型特异性的,而不是共享的(false discovery rate (FDR)

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]