Python爬虫入门实例:Python7个爬虫小案例(附源码)

07-21 923阅读

引言

随着互联网的快速发展,数据成为了新时代的石油。Python作为一种高效、易学的编程语言,在数据采集领域有着广泛的应用。本文将详细讲解Python爬虫的原理、常用库以及实战案例,帮助读者掌握爬虫技能。

一、爬虫原理

爬虫,又称网络爬虫,是一种自动获取网页内容的程序。它模拟人类浏览网页的行为,发送HTTP请求,获取网页源代码,再通过解析、提取等技术手段,获取所需数据。

1. HTTP请求与响应过程

爬虫首先向目标网站发送HTTP请求,请求可以包含多种参数,如URL、请求方法(GET或POST)、请求头(Headers)等。服务器接收到请求后,返回相应的HTTP响应,包括状态码、响应头和响应体(网页内容)。

2. 常用爬虫技术

(1)请求库:如requests、aiohttp等,用于发送HTTP请求。

(2)解析库:如BeautifulSoup、lxml、PyQuery等,用于解析网页内容。

(3)存储库:如pandas、SQLite等,用于存储爬取到的数据。

(4)异步库:如asyncio、aiohttp等,用于实现异步爬虫,提高爬取效率。

Python入门基础教程【文末有惊喜福利】

二、Python爬虫常用库

1. 请求库

(1)requests:简洁、强大的HTTP库,支持HTTP连接保持和连接池,支持SSL证书验证、Cookies等。

(2)aiohttp:基于asyncio的异步HTTP网络库,适用于需要高并发的爬虫场景。

2. 解析库

(1)BeautifulSoup:一个HTML和XML的解析库,简单易用,支持多种解析器。

(2)lxml:一个高效的XML和HTML解析库,支持XPath和CSS选择器。

(3)PyQuery:一个Python版的jQuery,语法与jQuery类似,易于上手。

3. 存储库

(1)pandas:一个强大的数据分析库,提供数据结构和数据分析工具,支持多种文件格式。

(2)SQLite:一个轻量级的数据库,支持SQL查询,适用于小型爬虫项目。

接下来将分享7个Python爬虫的小案例,帮助大家更好地学习和了解Python爬虫的基础知识。以下是每个案例的简介和源代码:

1. 爬取豆瓣电影Top250

这个案例使用BeautifulSoup库爬取豆瓣电影Top250的电影名称、评分和评价人数等信息,并将这些信息保存到CSV文件中。

import requests

from bs4 import BeautifulSoup

import csv

# 请求URL

url = ''

# 请求头部

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'

}

# 解析页面函数

def parse_html(html):

soup = BeautifulSoup(html, 'lxml')

movie_list = soup.find('ol', class_='grid_view').find_all('li')

for movie in movie_list:

title = movie.find('div', class_='hd').find('span', class_='title').get_text()

rating_num = movie.find('div', class_='star').find('span', class_='rating_num').get_text()

comment_num = movie.find('div', class_='star').find_all('span')[-1].get_text()

writer.writerow([title, rating_num, comment_num])

# 保存数据函数

def save_data():

f = open('douban_movie_top250.csv', 'a', newline='', encoding='utf-8-sig')

global writer

writer = csv.writer(f)

writer.writerow(['电影名称', '评分', '评价人数'])

for i in range(10):

url = '' + str(i*25) + '&filter='

response = requests.get(url, headers=headers)

parse_html(response.text)

f.close()

if __name__ == '__main__':

save_data()

 

2. 爬取猫眼电影Top100

这个案例使用正则表达式和requests库爬取猫眼电影Top100的电影名称、主演和上映时间等信息,并将这些信息保存到TXT文件中。

import requests

import re

# 请求URL

url = ''

# 请求头部

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'

}

# 解析页面函数

def parse_html(html):

pattern = re.compile('

(.*?)

.*?

(.*?)

.*?

(.*?)

', re.S)

items = re.findall(pattern, html)

for item in items:

yield {

'电影名称': item[1],

'主演': item[2].strip(),

'上映时间': item[3]

}

# 保存数据函数

def save_data():

f = open('maoyan_top100.txt', 'w', encoding='utf-8')

for i in range(10):

url = '' + str(i*10)

response = requests.get(url, headers=headers)

for item in parse_html(response.text):

f.write(str(item) + '\\\\n')

f.close()

if __name__ == '__main__':

save_data()

 

3. 爬取全国高校名单

这个案例使用正则表达式和requests库爬取全国高校名单,并将这些信息保存到TXT文件中。

import requests

import re

# 请求URL

url = ''

# 请求头部

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'

}

# 解析页面函数

def parse_html(html):

pattern = re.compile('

.*?(.*?).*?.*?(.*?).*?(.*?).*?(.*?).*?', re.S)

items = re.findall(pattern, html)

for item in items:

yield {

'排名': item[0],

'学校名称': item[2],

'省市': item[3],

'总分': item[4]

}

# 保存数据函数

def save_data():

f = open('university_top100.txt', 'w', encoding='utf-8')

response = requests.get(url, headers=headers)

for item in parse_html(response.text):

f.write(str(item) + '\\\\n')

f.close()

if __name__ == '__main__':

save_data()

 

4. 爬取中国天气网城市天气

这个案例使用xpath和requests库爬取中国天气网的城市天气,并将这些信息保存到CSV文件中。

import requests
from lxml import etree
import csv
# 请求URL
url = ''
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
selector = etree.HTML(html)
city = selector.xpath('//*[@id="around"]/div/div[1]/div[1]/h1/text()')[0]
temperature = selector.xpath('//*[@id="around"]/div/div[1]/div[1]/p/i/text()')[0]
weather = selector.xpath('//*[@id="around"]/div/div[1]/div[1]/p/@title')[0]
wind = selector.xpath('//*[@id="around"]/div/div[1]/div[1]/p/span/text()')[0]
return city, temperature, weather, wind
# 保存数据函数
def save_data():
f = open('beijing_weather.csv', 'w', newline='', encoding='utf-8-sig')
writer = csv.writer(f)
writer.writerow(['城市', '温度', '天气', '风力'])
for i in range(10):
response = requests.get(url, headers=headers)
city, temperature, weather, wind = parse_html(response.text)
writer.writerow([city, temperature, weather, wind])
f.close()
if __name__ == '__main__':
save_data()

5. 爬取当当网图书信息

这个案例使用xpath和requests库爬取当当网图书信息,并将这些信息保存到CSV文件中。

import requests
from lxml import etree
import csv
# 请求URL
url = ''
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
selector = etree.HTML(html)
book_list = selector.xpath('//*[@id="search_nature_rg"]/ul/li')
for book in book_list:
title = book.xpath('a/@title')[0]
link = book.xpath('a/@href')[0]
price = book.xpath('p[@]/span[@]/text()')[0]
author = book.xpath('p[@]/span[1]/a/@title')[0]
publish_date = book.xpath('p[@]/span[2]/text()')[0]
publisher = book.xpath('p[@]/span[3]/a/@title')[0]
yield {
'书名': title,
'链接': link,
'价格': price,
'作者': author,
'出版日期': publish_date,
'出版社': publisher
}
# 保存数据函数
def save_data():
f = open('dangdang_books.csv', 'w', newline='', encoding='utf-8-sig')
writer = csv.writer(f)
writer.writerow(['书名', '链接', '价格', '作者', '出版日期', '出版社'])
response = requests.get(url, headers=headers)
for item in parse_html(response.text):
writer.writerow(item.values())
f.close()
if __name__ == '__main__':
save_data()

6. 爬取糗事百科段子

这个案例使用xpath和requests库爬取糗事百科的段子,并将这些信息保存到TXT文件中。

import requests
from lxml import etree
# 请求URL
url = ''
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
selector = etree.HTML(html)
content_list = selector.xpath('//div[@]/span/text()')
for content in content_list:
yield content
# 保存数据函数
def save_data():
f = open('qiushibaike_jokes.txt', 'w', encoding='utf-8')
for i in range(3):
url = '' + str(i+1) + '/'
response = requests.get(url, headers=headers)
for content in parse_html(response.text):
f.write(content + '\\\\n')
f.close()
if __name__ == '__main__':
save_data()

7. 爬取新浪微博

这个案例使用selenium和requests库爬取新浪微博,并将这些信息保存到TXT文件中。

import time
from selenium import webdriver
import requests
# 请求URL
url = ''
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
print(html)
# 保存数据函数
def save_data():
f = open('weibo.txt', 'w', encoding='utf-8')
browser = webdriver.Chrome()
browser.get(url)
time.sleep(10)
browser.find_element_by_name('username').send_keys('username')
browser.find_element_by_name('password').send_keys('password')
browser.find_element_by_class_name('W_btn_a').click()
time.sleep(10)
response = requests.get(url, headers=headers, cookies=browser.get_cookies())
parse_html(response.text)
browser.close()
f.close()
if __name__ == '__main__':
save_data()

希望这7个小案例能够帮助大家更好地掌握Python爬虫的基础知识!

Python入门基础教程【文末有惊喜福利】

爬虫注意事项与技巧

  • 遵循Robots协议

  • 尊重网站的爬虫协议,避免爬取禁止爬取的内容。

  • 设置合理的请求间隔

  • 避免对目标网站服务器造成过大压力,合理设置请求间隔。

  • 处理反爬虫策略

  • 了解并应对网站的反爬虫策略,如IP封禁、验证码等。

  • 使用代理IP、Cookies等技巧

  • 提高爬虫的稳定性和成功率。

  • 分布式爬虫的搭建与优化

  • 使用Scrapy-Redis等框架,实现分布式爬虫,提高爬取效率。

    Python爬虫框架

    • Scrapy:强大的Python爬虫框架,支持分布式爬取、多种数据格式、强大的插件系统等。

    • Scrapy-Redis:基于Scrapy和Redis的分布式爬虫框架,实现分布式爬取和去重功能。

      结语:

      通过本文的讲解,相信读者已经对Python爬虫有了较为全面的认识。爬虫技能在数据分析、自然语言处理等领域具有广泛的应用,希望读者能够动手实践,不断提高自己的技能水平。同时,请注意合法合规地进行爬虫,遵守相关法律法规。祝您学习愉快!

      关于Python技术储备

      学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

      ① Python所有方向的学习路线图,清楚各个方向要学什么东西

      ②Python、PyCharm学习工具包全家桶,环境配置教程视频

      ③Python全套电子书籍PDF,全部都是干货知识

      ④ 100多节Python课程视频,涵盖必备基础、爬虫和数据分析

      ⑤ 100多个Python实战案例,学习不再是只会理论

      全套Python学习资料分享:

      一、Python所有方向的学习路线

      Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      二、学习软件

      工欲善其事必先利其器。学习Python常用的开发软件都在这里了,还有环境配置的教程,给大家节省了很多时间。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      三、全套PDF电子书

      书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      四、入门学习视频全套

      我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      五、实战案例

      光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      六、面试资料

      我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

      Python爬虫入门实例:Python7个爬虫小案例(附源码)
      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      Python爬虫入门实例:Python7个爬虫小案例(附源码)

      希望这些内容对大家有所帮助,因为你我都是热爱python的编程语言爱好者。

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]