【单目3D检测】smoke(1):模型方案详解

07-21 1144阅读

纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

【单目3D检测】smoke(1):模型方案详解

  • 题目:SMOKE:Single-Stage Monocular 3D Object Detection via Keypoint Estimation
  • 代码:https://github.com/lzccccc/SMOKE

    Introduction


    2D目标检测目前已经在精度和速度上都取得了不错的成绩,而3D目标检测由于需要同时估计出目标的位置与姿态,因此相比2D是一个更具挑战的方向。

    目前性能最好的3D目标检测还是需要依赖激光雷达的点云或者点云+图像融合,考虑到成本因素,仅依靠单目摄像头的3D目标检测还是非常值得研究的。

    本作有以下几个贡献点:

    • 提出了一个one-stage单目3D检测方法,思路简答,且end-to-end。
    • 3D框8个角点的计算使用了多种方式得到,每种方式都参与了loss的计算,使训练更容易收敛。
    • 在KITTI数据集上达到了SOTA。

      Detection Problem


      【单目3D检测】smoke(1):模型方案详解

      SMOKE Approach

      【单目3D检测】smoke(1):模型方案详解


      Backbone

      主干网络选择使用DLA-34,其中部分卷积换成了DCN,最后的输出相对于原始图4次下采样的特征图。论文还将BN换成了GN(GroupNorm),因为GN对batch size的大小不那么敏感,且在训练中对噪声更鲁棒。

      3D Detection Network

      head部分一共两条分支,一条用于检测目标中心点位置同时分类,另一条回归目标的3D信息。

      Keypoint Branch

      中心点的估计与CenterNet那片论文的思路相似,不同的是CenterNet里用的是2D框的中心点,而这里用的是3D框的中心点在图像上的投影点,如下图所示:

      【单目3D检测】smoke(1):模型方案详解

      Regression Branch

      【单目3D检测】smoke(1):模型方案详解

      根据深度信息,投影点(x,y)坐标,和相机参数,可计算得到3D中心点坐标

      【单目3D检测】smoke(1):模型方案详解

      【单目3D检测】smoke(1):模型方案详解

      预测长宽高,有点像anchor的思想

      【单目3D检测】smoke(1):模型方案详解

      偏航角:ray到Z轴角度

      【单目3D检测】smoke(1):模型方案详解

      【单目3D检测】smoke(1):模型方案详解

      【单目3D检测】smoke(1):模型方案详解

      Loss Function

      偏航角pred与尺寸gt,坐标gt构成的3d box与gt的回归loss

      偏航角gt与尺寸pred,坐标gt构成的3d box与gt的回归loss

      偏航角gt与尺寸gt,坐标pred构成的3d box与gt的回归loss

      Keypoint Classification分支的loss跟CenterNet中一样,用的是focal loss。

      Regression分支的loss计算比较有新意,没有采取直接计算τ \tauτ中8个参数的loss,而是通过在角度、尺寸、坐标位置三种分支下得到的3D框的8个角点去和真值比较计算loss。

      总loss:

      【单目3D检测】smoke(1):模型方案详解

      # mmdetection3d/mmdet3d/models/dense_heads/smoke_mono3d_head.py
      # 角度分支下计算得到的3D框,所谓角度分支即只有角度用的是预测值,而坐标位置和尺寸两个用的是真值
      bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, orientations, img_metas)
      # 尺寸分支下计算得到的3D框
      bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, gt_orientations, img_metas)
      # 坐标位置分支下计算得到的3D框
      bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, gt_orientations, img_metas)
      ...
      ...
      # 三种分支下分别计算推理出的8个角点的和真值8个角点的loss
      loss_bbox_oris = self.loss_bbox(pred_bboxes['ori'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])
      loss_bbox_dims = self.loss_bbox(pred_bboxes['dim'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])
      loss_bbox_locs = self.loss_bbox(pred_bboxes['loc'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])
      loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris
      

      Conclusion


      纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

      参考:https://blog.csdn.net/qq_30483585/article/details/124954023

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]