RT-DETR+Flask实现目标检测推理案例
今天,带大家利用RT-DETR(我们可以换成任意一个模型)+Flask来实现一个目标检测平台小案例,其实现效果如下:
目标检测案例
这个案例很简单,就是让我们上传一张图像,随后选择一下置信度,即可检测出图像中的目标,那么具体该如何实现呢?
RT-DETR模型推理
在先前的学习过程中,博主对RT-DETR进行来了简要的介绍,作为百度提出的实时性目标检测模型,其无论是速度还是精度均取得了较为理想的效果,今天则主要介绍一下RT-DETR的推理过程,与先前使用DETR中使用pth权重与网络结构相结合的推理方式不同,RT-DETR中使用的是onnx这种权重文件,因此,我们需要先对onnx文件进行一个简单了解:
ONNX模型文件
import onnx # 加载模型 model = onnx.load('onnx_model.onnx') # 检查模型格式是否完整及正确 onnx.checker.check_model(model) # 获取输出层,包含层名称、维度信息 output = self.model.graph.output print(output)
在原本的DETR类目标检测算法中,推理是采用权重文件与模型结构代码相结合的方式,而在RT-DETR中,则采用onnx模型文件来进行推理,即只需要该模型文件即可。
首先是将pth文件与模型结构进行匹配,从而导出onnx模型文件
"""by lyuwenyu """ import os import sys sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) import argparse import numpy as np from src.core import YAMLConfig import torch import torch.nn as nn def main(args, ): """main """ cfg = YAMLConfig(args.config, resume=args.resume) if args.resume: checkpoint = torch.load(args.resume, map_location='cpu') if 'ema' in checkpoint: state = checkpoint['ema']['module'] else: state = checkpoint['model'] else: raise AttributeError('only support resume to load model.state_dict by now.') # NOTE load train mode state -> convert to deploy mode cfg.model.load_state_dict(state) class Model(nn.Module): def __init__(self, ) -> None: super().__init__() self.model = cfg.model.deploy() self.postprocessor = cfg.postprocessor.deploy() print(self.postprocessor.deploy_mode) def forward(self, images, orig_target_sizes): outputs = self.model(images) return self.postprocessor(outputs, orig_target_sizes) model = Model() dynamic_axes = { 'images': {0: 'N', }, 'orig_target_sizes': {0: 'N'} } data = torch.rand(1, 3, 640, 640) size = torch.tensor([[640, 640]]) torch.onnx.export( model, (data, size), args.file_name, input_names=['images', 'orig_target_sizes'], output_names=['labels', 'boxes', 'scores'], dynamic_axes=dynamic_axes, opset_version=16, verbose=False ) if args.check: import onnx onnx_model = onnx.load(args.file_name) onnx.checker.check_model(onnx_model) print('Check export onnx model done...') if args.simplify: import onnxsim dynamic = True input_shapes = {'images': data.shape, 'orig_target_sizes': size.shape} if dynamic else None onnx_model_simplify, check = onnxsim.simplify(args.file_name, input_shapes=input_shapes, dynamic_input_shape=dynamic) onnx.save(onnx_model_simplify, args.file_name) print(f'Simplify onnx model {check}...') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', '-c', default="D:\graduate\programs\RT-DETR-main\RT-DETR-main//rtdetr_pytorch\configs/rtdetr/rtdetr_r18vd_6x_coco.yml",type=str, ) parser.add_argument('--resume', '-r', default="D:\graduate\programs\RT-DETR-main\RT-DETR-main/rtdetr_pytorch/tools\output/rtdetr_r18vd_6x_coco\checkpoint0024.pth",type=str, ) parser.add_argument('--file-name', '-f', type=str, default='model.onnx') parser.add_argument('--check', action='store_true', default=False,) parser.add_argument('--simplify', action='store_true', default=False,) args = parser.parse_args() main(args)
随后,便是利用onnx模型文件进行目标检测推理过程了
onnx也有自己的一套流程:
onnx前向InferenceSession的使用
关于onnx的前向推理,onnx使用了onnxruntime计算引擎。
onnx runtime是一个用于onnx模型的推理引擎。微软联合Facebook等在2017年搞了个深度学习以及机器学习模型的格式标准–ONNX,顺路提供了一个专门用于ONNX模型推理的引擎(onnxruntime)。
import onnxruntime # 创建一个InferenceSession的实例,并将模型的地址传递给该实例 sess = onnxruntime.InferenceSession('onnxmodel.onnx') # 调用实例sess的润方法进行推理 outputs = sess.run(output_layers_name, {input_layers_name: x})
推理详细代码
推理代码如下:
import torch import onnxruntime as ort from PIL import Image, ImageDraw from torchvision.transforms import ToTensor if __name__ == "__main__": ################## classes = ['car','truck',"bus"] ################## # print(onnx.helper.printable_graph(mm.graph)) ############# img_path = "1.jpg" ############# im = Image.open(img_path).convert('RGB') im = im.resize((640, 640)) im_data = ToTensor()(im)[None] print(im_data.shape) size = torch.tensor([[640, 640]]) sess = ort.InferenceSession("model.onnx") import time start = time.time() output = sess.run( output_names=['labels', 'boxes', 'scores'], #output_names=None, input_feed={'images': im_data.data.numpy(), "orig_target_sizes": size.data.numpy()} ) end = time.time() fps = 1.0 / (end - start) print(fps) # print(type(output)) # print([out.shape for out in output]) labels, boxes, scores = output draw = ImageDraw.Draw(im) thrh = 0.6 for i in range(im_data.shape[0]): scr = scores[i] lab = labels[i][scr > thrh] box = boxes[i][scr > thrh] print(i, sum(scr > thrh)) #print(lab) print(f'box:{box}') for l, b in zip(lab, box): draw.rectangle(list(b), outline='red',) print(l.item()) draw.text((b[0], b[1] - 10), text=str(classes[l.item()]), fill='blue', ) ############# im.save('2.jpg') #############
前端代码
前端代码包含两部分,一个是上传页面,一个是显示页面
上传页面如下:
#addCommodityIndex { text-align: center; width: 300px; height: 340px; position: absolute; left: 50%; top: 50%; margin: -200px 0 0 -200px; border: solid #ccc 1px; padding: 35px; } #imghead { cursor: pointer; } .btn { width: 100%; height: 40px; text-align: center; }目标检测
上传图像选择置信度 0.5 0.6 0.7 0.8 0.9
显示页面:
#addCommodityIndex { text-align: center; position: absolute; left: 40%; top: 50%; margin: -200px 0 0 -200px; border: solid #ccc 1px; } #imghead { cursor: pointer; } .result { width: 100%; height: 100%; text-align: center; }
Flask框架代码:
# -*- coding: utf-8 -*- from flask import Flask,request,render_template import json import os import time app = Flask(__name__) import infer @app.route('https://blog.csdn.net/home',methods=['GET']) def home(): return render_template('upload.html') @app.route('/upload',methods=['GET','POST']) def upload(): if request.method == 'POST': f = request.files['file'] #获取数据流 rootPath = os.path.dirname(os.path.abspath(__file__)) #根目录路径 #创建存储文件的文件夹,使用时间戳防止重名覆盖 file_path = 'static/upload/' + str(int(time.time())) absolute_path = os.path.join(rootPath,file_path).replace('\\','/') #存储文件的绝对路径,window路径显示\\要转化/ if not os.path.exists(absolute_path): #不存在改目录则会自动创建 os.makedirs(absolute_path) save_file_name = os.path.join(absolute_path,f.filename).replace('\\','/') #文件存储路径(包含文件名) f.save(save_file_name) score=request.values.to_dict().get("score") num,fps=infer.inference(save_file_name,score) #return json.dumps({'code':200,'url':url_path},ensure_ascii=False) return render_template("show.html",num=num,fps=fps) app.run(port='5000',debug=True)
上述项目博主已经上传到github上
git init git add README.md git commit -m "first commit" git branch -M main git remote add origin https://github.com/pengxiang1998/rt-detr.git git push -u origin main
项目地址
在使用onnx时,安装了onnxruntime后,出现了下面的错误:
ImportError: cannot import name 'create_and_register_allocator_v2' from 'onnxruntime.capi._pybind_state'
这是由于onnxruntime-gpu版本与CUDA、CuDNN版本不匹配导致的,可以查看下面的网址来查看匹配版本
https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
随后又出现错误:
> This ORT build has ['TensorrtExecutionProvider', > 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled. Since ORT > 1.9, you are required to explicitly set the providers parameter when instantiating InferenceSession. For example, > onnxruntime.InferenceSession(..., > providers=['TensorrtExecutionProvider',
这是由于InferenceSession中没有提供对应的provider,修改代码如下:
if torch.cuda.is_available(): print("GPU") sess = ort.InferenceSession("model.onnx", None, providers=["CUDAExecutionProvider"]) else: print("CPU") sess= ort.InferenceSession("model.onnx", None)
随后运行,发现安装了onnxruntime-gpu后的速度竟然满了下来,fps仅为0.2,而原本使用onnxruntime的fps则为7左右,这到底是怎么回事呢?
YOLO集成推理
而在YOLO集成的RT-DETR项目中,训练得到的权重 文件为.pt,在推理时需要与RT-DETR搭配使用,从而实现推理过程:
需要注意的是,由于YOLO里面集成了多种模型,因此为了具有适配性,其代码都具有通用性
from ultralytics.models import RTDETR if __name__ == '__main__': model=RTDETR("weights/best.pt") model.predict(source="images/1.mp4",save=True,conf=0.6)
随后执行predict,代码如下:
def predict( self, source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, stream: bool = False, predictor=None, **kwargs, ) -> list: if source is None: source = ASSETS LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") is_cli = (ARGV[0].endswith("yolo") or ARGV[0].endswith("ultralytics")) and any( x in ARGV for x in ("predict", "track", "mode=predict", "mode=track") ) custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults args = {**self.overrides, **custom, **kwargs} # highest priority args on the right prompts = args.pop("prompts", None) # for SAM-type models if not self.predictor: self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks) self.predictor.setup_model(model=self.model, verbose=is_cli) else: # only update args if predictor is already setup self.predictor.args = get_cfg(self.predictor.args, args) if "project" in args or "name" in args: self.predictor.save_dir = get_save_dir(self.predictor.args) if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models self.predictor.set_prompts(prompts) return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
这部分代码在功能上具有复用性,因此在理解上存在一定难度。