数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

07-19 856阅读

适用平台:Matlab2021版及以上

数据清洗是数据处理和分析中的一个关键步骤,特别是对于像风电场这样的大型、复杂数据集。清洗数据的目的是为了确保数据的准确性、一致性和完整性,从而提高数据分析的质量和可信度,是深度学习训练和预测前的重要步骤。

  • 在实际应用中,数据可能会因为传感器故障、通信错误或人为输入错误而产生异常值或噪声数据。这些异常值会严重影响后续的数据分析和模型训练。清洗数据可以确保数据的准确性,减少噪声对分析结果的干扰。

  • 缺失值是数据集中常见的问题。如果不处理缺失值,可能会导致分析结果不准确或模型训练失败。通过填补缺失值,可以提高数据的完整性,确保每个数据点都有意义。

    手动填充空值、删除异常值的方法需要耗费大量的时间,且准确性得不到保障,本程序以风电场数据为例,进行数据清洗和处理,包括异常值处理、缺失值处理、离群值处理、以及相关性分析,并将清洗后的数据保存到新的Excel文件中。

    ①异常值处理:

    研究现状:

    异常值检测与处理是数据预处理中的重要环节。常见方法包括统计方法(如Z-score、IQR)、机器学习方法(如支持向量机)、以及深度学习方法(如自编码器)。统计方法利用数据的统计特性(如均值、方差、中位数)进行异常值检测,适用于简单数据集。

    本文方法:

    • 结合统计方法(删除全相同元素行)和基于RANSAC的鲁棒拟合方法,有效处理不同类型的异常值。

    • RANSAC方法能够在噪声和异常值存在的情况下进行可靠的模型拟合,适用于存在显著异常值的数据集。

      数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

      ②缺失值处理

      研究现状:

      ①缺失值处理方法多种多样,包括删除法、填补法(如均值填补、中位数填补、最近邻填补)、插值法(如线性插值、样条插值)、以及模型预测法(如多重插补、矩阵分解)。

      ②简单填补方法(如均值填补)易于实现,但可能引入偏差。

      ③插值法利用数据的连续性进行填补,适用于时间序列数据。

      ④模型预测法利用机器学习模型对缺失值进行预测,精度高,但计算复杂。

      本文方法:

      • 使用前向填补法简单有效,适用于时间序列数据,能够保留数据的趋势和模式。

      • 前向填补法计算成本低,适合于大规模数据集的快速处理。

        数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

        ③离群值处理

        研究现状:

        ①离群值检测方法包括基于统计的检测方法(如Grubbs' Test、Tukey's Fences)、基于聚类的方法(如K-means、DBSCAN)、基于机器学习的方法(如孤立森林、LOF)。

        ②统计方法适用于简单数据集,易于实现。

        ③聚类方法通过分析数据点的密度或距离来识别离群值,适用于聚类明显的数据集。

        ④机器学习方法能够处理复杂数据分布和高维数据,具有较高的检测准确性。

        本文方法:

        • 结合移动窗口统计特性(滑动窗线性插值)和基于残差的离群值检测方法(孤立森林),处理离群值的鲁棒性强。

        • 使用中位数绝对离差(MAD)方法进行滑动窗线性插值,能够平滑数据波动,适用于时间序列数据。

        • 残差分析结合孤立森林,能够有效识别复杂数据分布中的离群值。

          数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

          ④ 创新点总结

          • 多方法结合,处理全面:

            • 本程序结合了统计方法、拟合方法、插值方法和机器学习方法,能够全面、有效地处理异常值、缺失值和离群值。

            • 通过删除全相同元素行、前向填补缺失值、滑动窗线性插值和RANSAC拟合等多种方法,保证数据处理的全面性和鲁棒性。

          • 高效计算,适用性广:

            • 采用简单有效的前向填补和滑动窗线性插值方法,计算成本低,适用于大规模数据集的快速处理。

            • RANSAC拟合和孤立森林方法适用于复杂数据分布,能够处理高维数据和噪声数据。

          • 可视化展示,直观评估:

            • 通过绘制处理前后的相关性热力图和特征对比图,直观展示数据处理效果,便于评估和验证处理方法的有效性。

            • 可视化展示有助于理解数据特征和变化,增强数据处理的透明度和解释性。

            程序结果

            各特征变量清洗前后的数据对比:

            数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

            数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

            数据清洗!即插即用!异常值、缺失值、离群值处理、残差分析和孤立森林异常检测,确保数据清洗的全面性和准确性,MATLAB程序!

            部分程序

            %% 相关性极差的也定义为异常值
            % 处理:采用Ransac拟合后替代  公众号:《创新优化及预测代码》
            x = res_new(:, 1);   % 提取第1列数据作为自变量
            y = res_new(:, end); % 提取最后一列数据作为因变量
            xyPoints = [x y];    % 组合自变量和因变量
            % RANSAC直线拟合
            sampleSize = 30;   % 每次采样的点数
            maxDistance = 400; % 内点到模型的最大距离
            fitLineFcn = @(xyPoints) polyfit(xyPoints(:, 1), xyPoints(:, 2), 1);                           % 拟合函数,采用polyfit进行线性拟合
            evalLineFcn = @(model, xyPoints) sum((y - polyval(model, x)).^2, 2);                           % 距离估算函数,计算点到拟合线的距离
            [modelRANSAC, inlierIdx] = ransac(xyPoints, fitLineFcn, evalLineFcn, sampleSize, maxDistance); % 使用RANSAC算法拟合直线,并提取内点的索引
            modelInliers = polyfit(xyPoints(inlierIdx, 1), xyPoints(inlierIdx, 2), 1);                     % 对内点进行最小二乘法线性拟合
            figure;
            plot(xyPoints(inlierIdx, 1), xyPoints(inlierIdx, 2), 'p',MarkerSize=10);    % 绘制内点
            hold on;
            plot(xyPoints(~inlierIdx, 1), xyPoints(~inlierIdx, 2), 'r.',MarkerSize=10); % 绘制外点
            hold on;
            inlierPts = xyPoints(inlierIdx, :);                        % 提取内点数据
            x2 = linspace(min(inlierPts(:, 1)), max(inlierPts(:, 1))); % 生成内点自变量范围的等间距点
            y2 = polyval(modelInliers, x2);                            % 计算内点拟合直线上的值
            plot(x2, y2, 'g-',LineWidth=2);                            % 绘制RANSAC直线拟合结果
            hold off;
            title('最小二乘直线拟合 与 RANSAC直线拟合 对比');                    % 设置图标题
            xlabel(variableNames{1});                                            % 设置X轴标签
            ylabel(variableNames{end});                                          % 设置Y轴标签
            legend('内点', '噪声点', 'RANSAC直线拟合', 'Location', 'NorthWest'); % 添加图例 % 公众号:《创新优化及预测代码》
            %% 残差-孤立森林  公众号:《创新优化及预测代码》
            % 计算Ransac理论值
            T_linear = (modelRANSAC(1) * res_new(:, 1) + modelRANSAC(2));       % 计算RANSAC理论直线值
            for i = 1:size(T_linear, 1)
                if T_linear(i, end)  
            

            部分内容源自网络,侵权联系删除!

            欢迎感兴趣的小伙伴关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]