适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南

07-14 1514阅读

将下面内容保存为install.bash,直接用bash执行一把梭解决

适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南
(图片来源网络,侵删)
#!/bin/bash
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
### to verify your gpu is cuda enable check
lspci | grep -i nvidia
### If you have previous installation remove it first. 
sudo apt purge nvidia* -y
sudo apt remove nvidia-* -y
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt autoremove -y && sudo apt autoclean -y
sudo rm -rf /usr/local/cuda*
# system update
sudo apt update && sudo apt upgrade -y
# install other import packages
sudo apt install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
# find recommended driver versions for you
ubuntu-drivers devices
# install nvidia driver with dependencies
sudo apt install libnvidia-common-515 libnvidia-gl-515 nvidia-driver-515 -y
# reboot
sudo reboot now
# verify that the following command works
nvidia-smi
sudo wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
# Update and upgrade
sudo apt update && sudo apt upgrade -y
 # installing CUDA-11.8
sudo apt install cuda-11-8 -y
# setup your paths
echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
# install cuDNN v11.8
# First register here: https://developer.nvidia.com/developer-program/signup
CUDNN_TAR_FILE="cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz"
sudo wget https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
sudo tar -xvf ${CUDNN_TAR_FILE}
sudo mv cudnn-linux-x86_64-8.7.0.84_cuda11-archive cuda
# copy the following files into the cuda toolkit directory.
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.8/include
sudo cp -P cuda/lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
# Finally, to verify the installation, check
nvidia-smi
nvcc -V
# install Pytorch (an open source machine learning framework)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

转载并汉化自Github

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]