【排序算法】归并排序
目录
一.基本思想
二.递归版本
三.非递归版本
四.特性总结
1.时间复杂度:O(N*logN)
2.空间复杂度:O(N)
3.稳定性:稳定
一.基本思想
归并排序是采用分治法的一个非常典型的应用。它将已经有序的序列合并为完全有序的序列,即先使得每一个子序列有序,再让子序列之间有序。归并排序建立在归并操作上,以下动图能很好的演示归并排序中归并的过程:
但上图只展示了归并排序中归并的过程,没有对拆分过程的展示,接下来我将具体介绍归并排序的核心步骤。
已知对于两个已经有序的序列而言,使用p1和p2来比较,p1和p2中较小的一个一定就是当前最小的,放入临时数组tmp中,随后指向的p向后移动,再次进行比较,如此就能将两个有序的序列合并为一个有序序列,这就做到了排序。
然而,如何得到两个已经有序的序列呢?这是类似问题,与排序整个序列的主问题是类似的,很明显,已经可以猜到要使用递归来实现了,那么只需要将两个无序序列进行再次拆分,直到序列中仅剩一个数据,那么此时就可以看作是有序的了,这就是拆分过程。
拆分结束后,就进行归并,每两个已有序的序列合并到一起,再和其他已合并的序列进行合并,最终合并为一个序列,这就是排序后得到的最终结果,下图展示了整个过程:
具体应该如何拆分?拆分也是有讲究的,不注意会产生问题。一般都会想到取中分割,取序列左端为begin,右端为end,mid自然等于(begin+end)/2,那么就可以围绕mid拆分为左右两个序列,其中mid应该包含在左端,否则会造成死循环,也就是应该分为[begin,mid]和[mid+1,end],证明如下:
二.递归版本
//归并排序-主体
void _Merge(int* a, int* tmp, int begin, int end)
{
//结束条件
if (begin >= end)
return;
//拆分
int mid = (begin + end) / 2;
_Merge(a, tmp, begin, mid);
_Merge(a, tmp, mid + 1, end);
//归并
int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;
while (begin1
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




