最新hadoop学习笔记:运行wordcount对文件字符串进行统计案例(1),2024大厂Java知识点总结+面试题解析
Docker步步实践
目录文档:
①Docker简介
②基本概念
③安装Docker
④使用镜像:
⑤操作容器:
⑥访问仓库:
⑦数据管理:
⑧使用网络:
⑨高级网络配置:
⑩安全:
⑪底层实现:
⑫其他项目:
本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录
需要这份系统化的资料的朋友,可以点击这里获取
[root@192 hadoop-2.7.5]# pwd
/opt/hadoop/app/hadoop/hadoop-2.7.5
新建一个example.txt,并随机写入一些字符:
aaa
bbb
cccc
dedef
dedf
dedf
ytrytrgtrcdscdscdsc
dedaxa
cdsvfbgf
uyiuyi
ss
xaxaxaxa
接着,在hdfs文件系统上新建一个input文件夹,用来存放example.txt文件——
[root@192 hadoop-2.7.5]# hdfs dfs -mkdir /input
然后,将example.txt复制到hdfs系统上的input目录下——
[root@192 hadoop-2.7.5]# hdfs dfs -put example.txt /input
检查一下,可以看到,example.txt文件已经在input目录底下了——
[root@192 hadoop-2.7.5]# hdfs dfs -ls /input
Found 1 items
-rw-r–r-- 3 root supergroup 84 2021-10-20 12:43 /input/example.txt
这些准备工作做好后,就可以开始使用hadoop自带的jar包来统计文件example.txt当中各字符的数量了。
二、运行wordcount对文件字符进行统计
直接在NameNode节点对应的服务器上执行——
[root@192 hadoop-2.7.5]# hadoop jar /opt/hadoop/app/hadoop/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /input /output
这行指令的大概意思是,分布式计算统计input目录底下的文件中的字符数量,将统计结果reduce到output当中,故而,最后若执行没问题,可以在output目录下获取到统计结果记录。
我第一次执行时,发生了一个异常,即执行完后,日志运行到INFO mapreduce.Job: Running job: job_1631618032849_0002这一行时,就直接卡在了这里,没有任何动静了——
[hadoop@192 bin]$ hadoop jar /opt/hadoop/app/hadoop/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /input /output
21/10/20 10:43:29 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.200.111:8032
21/10/20 10:43:30 INFO input.FileInputFormat: Total input paths to process : 1
21/10/20 10:43:30 INFO mapreduce.JobSubmitter: number of splits:1
21/10/20 10:43:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1631618032849_0002
21/10/20 10:43:31 INFO impl.YarnClientImpl: Submitted application application_1631618032849_0002
21/10/20 10:43:31 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1631618032849_0002/
21/10/20 10:43:31 INFO mapreduce.Job: Running job: job_1631618032849_0002
百度了一番后,根据一些思路,最后将mapred-site.xml最开始的配置由
mapreduce.framework.name
yarn
改成这里——
mapreduce.job.tracker
hdfs://master1:8001
true
最后
各位读者,由于本篇幅度过长,为了避免影响阅读体验,下面我就大概概括了整理了
本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录
需要这份系统化的资料的朋友,可以点击这里获取
[外链图片转存中…(img-6ehWIz01-1715627069470)]
本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录
需要这份系统化的资料的朋友,可以点击这里获取