Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

07-11 969阅读

前言

概念词就不多说了,我简单地介绍下 , spring batch 是一个 方便使用的 较健全的 批处理 框架。

为什么说是方便使用的,因为这是 基于spring的一个框架,接入简单、易理解、流程分明。

为什么说是较健全的, 因为它提供了往常我们在对大批量数据进行处理时需要考虑到的 日志跟踪、事务粒度调配、可控执行、失败机制、重试机制、数据读写等。

正文

那么回到文章,我们该篇文章将会带来给大家的是什么?(结合实例讲解那是当然的)

从实现的业务场景来说,有以下两个:

  1. 从 csv文件 读取数据,进行业务处理再存储
  2. 从 数据库 读取数据,进行业务处理再存储

也就是平时经常遇到的数据清理或者数据过滤,又或者是数据迁移备份等等。大批量的数据,自己实现分批处理需要考虑的东西太多了,又不放心,那么使用 Spring Batch 框架 是一个很好的选择。

首先,在进入实例教程前,我们看看这次的实例里,我们使用springboot 整合spring batch 框架,要编码的东西有什么?

通过一张简单的图来了解:

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

可能大家看到这个图,是不是多多少少想起来定时任务框架?确实有那么点像,但是我必须在这告诉大家,这是一个批处理框架,不是一个schuedling 框架。但是前面提到它提供了可执行控制,也就是说,啥时候执行是可控的,那么显然就是自己可以进行扩展结合定时任务框架,实现你心中所想。

ok,回到主题,相信大家能从图中简单明了地看到我们这次实例,需要实现的东西有什么了。所以我就不在对各个小组件进行大批量文字的描述了。

那么我们事不宜迟,开始我们的实例教程。

首先准备一个数据库,里面建一张简单的表,用于实例数据的写入存储或者说是读取等等。

bloginfo表

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

相关建表sql语句:

CREATE TABLE `bloginfo`  (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `blogAuthor` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '博客作者标识',
  `blogUrl` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '博客链接',
  `blogTitle` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '博客标题',
  `blogItem` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '博客栏目',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 89031 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

pom文件里的核心依赖:

    org.springframework.boot
    spring-boot-starter-web


    org.springframework.boot
    spring-boot-starter-test
    test


    org.springframework.boot
    spring-boot-starter-batch


    org.hibernate
    hibernate-validator
    6.0.7.Final


    org.mybatis.spring.boot
    mybatis-spring-boot-starter
    2.0.0


    mysql
    mysql-connector-java
    runtime


    com.alibaba
    druid-spring-boot-starter
    1.1.18

yml文件:

spring:
  batch:
    job:
#设置为 false -需要jobLaucher.run执行
      enabled: false
    initialize-schema: always
#    table-prefix: my-batch
  datasource:
    druid:
      username: root
      password: root
      url: jdbc:mysql://localhost:3306/hellodemo?useSSL=false&useUnicode=true&characterEncoding=UTF-8&serverTimezone=GMT%2B8&zeroDateTimeBehavior=convertToNull
      driver-class-name: com.mysql.cj.jdbc.Driver
      initialSize: 5
      minIdle: 5
      maxActive: 20
      maxWait: 60000
      timeBetweenEvictionRunsMillis: 60000
      minEvictableIdleTimeMillis: 300000
      validationQuery: SELECT 1 FROM DUAL
      testWhileIdle: true
      testOnBorrow: false
      testOnReturn: false
      poolPreparedStatements: true
      maxPoolPreparedStatementPerConnectionSize: 20
      useGlobalDataSourceStat: true
      connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
server:
  port: 8665

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

ps:这里我们用到了druid数据库连接池,其实有个小坑,后面文章会讲到。

因为我们这次的实例最终数据处理完之后,是写入数据库存储(当然你也可以输出到文件等等)。

所以我们前面也建了一张表,pom文件里面我们也整合的mybatis,那么我们在整合spring batch 主要编码前,我们先把这些关于数据库打通用到的简单过一下。

pojo 层

BlogInfo.java :

@Data
public class BlogInfo {
    private Integer id;
    private String blogAuthor;
    private String blogUrl;
    private String blogTitle;
    private String blogItem;
    @Override
    public String toString() {
        return "BlogInfo{" +
                "id=" + id +
                ", blogAuthor='" + blogAuthor + '\'' +
                ", blogUrl='" + blogUrl + '\'' +
                ", blogTitle='" + blogTitle + '\'' +
                ", blogItem='" + blogItem + '\'' +
                '}';
    }
 }

mapper层

BlogMapper.java :

ps:可以看到这个实例我用的是注解的方式,哈哈为了省事,servcie层和impl层,就省略不写了。

import com.example.batchdemo.pojo.BlogInfo;
import org.apache.ibatis.annotations.*;
import java.util.List;
import java.util.Map;
@Mapper
public interface BlogMapper {
    @Insert("INSERT INTO bloginfo ( blogAuthor, blogUrl, blogTitle, blogItem )   VALUES ( #{blogAuthor}, #{blogUrl},#{blogTitle},#{blogItem}) ")
    @Options(useGeneratedKeys = true, keyProperty = "id")
    int insert(BlogInfo bloginfo);
    @Select("select blogAuthor, blogUrl, blogTitle, blogItem from bloginfo where blogAuthor  

接下来 ,重头戏,我们开始对前边那张图里涉及到的各个小组件进行编码。

首先创建一个 配置类, MyBatchConfig.java:

从我起名来看,可以知道这基本就是咱们整合spring batch 涉及到的一些配置组件都会写在这里了。

首先我们按照咱们上面的图来看,里面包含内容有:

JobRepository job的注册/存储器
JobLauncher job的执行器
Job job任务,包含一个或多个Step
Step 包含(ItemReader、ItemProcessor和ItemWriter)
ItemReader 数据读取器
ItemProcessor 数据处理器
ItemWriter 数据输出器

首先,在MyBatchConfig类前加入注解:

@Configuration 用于告诉spring,咱们这个类是一个自定义配置类,里面很多bean都需要加载到spring容器里面

@EnableBatchProcessing 开启批处理支持

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

然后开始往MyBatchConfig类里,编写各个小组件。

JobRepository

写在MyBatchConfig类里

/**
 * JobRepository定义:Job的注册容器以及和数据库打交道(事务管理等)
 * @param dataSource
 * @param transactionManager
 * @return
 * @throws Exception
 */
@Bean
public JobRepository myJobRepository(DataSource dataSource, PlatformTransactionManager transactionManager) throws Exception{
    JobRepositoryFactoryBean jobRepositoryFactoryBean = new JobRepositoryFactoryBean();
    jobRepositoryFactoryBean.setDatabaseType("mysql");
    jobRepositoryFactoryBean.setTransactionManager(transactionManager);
    jobRepositoryFactoryBean.setDataSource(dataSource);
    return jobRepositoryFactoryBean.getObject();
}

JobLauncher

写在MyBatchConfig类里

/**
 * jobLauncher定义:job的启动器,绑定相关的jobRepository
 * @param dataSource
 * @param transactionManager
 * @return
 * @throws Exception
 */
@Bean
public SimpleJobLauncher myJobLauncher(DataSource dataSource, PlatformTransactionManager transactionManager) throws Exception{
    SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
    // 设置jobRepository
    jobLauncher.setJobRepository(myJobRepository(dataSource, transactionManager));
    return jobLauncher;
}

Job

写在MyBatchConfig类里

/**
 * 定义job
 * @param jobs
 * @param myStep
 * @return
 */
@Bean
public Job myJob(JobBuilderFactory jobs, Step myStep){
    return jobs.get("myJob")
            .incrementer(new RunIdIncrementer())
            .flow(myStep)
            .end()
            .listener(myJobListener())
            .build();
}

对于Job的运行,是可以配置监听器的

JobListener

写在MyBatchConfig类里

/**
 * 注册job监听器
 * @return
 */
@Bean
public MyJobListener myJobListener(){
    return new MyJobListener();
}

这是一个我们自己自定义的监听器,所以是单独创建的,MyJobListener.java:

/**
 * @Author : JCccc
 * @Description :监听Job执行情况,实现JobExecutorListener,且在batch配置类里,Job的Bean上绑定该监听器
 **/
public class MyJobListener implements JobExecutionListener {
    private Logger logger = LoggerFactory.getLogger(MyJobListener.class);
    @Override
    public void beforeJob(JobExecution jobExecution) {
        logger.info("job 开始, id={}",jobExecution.getJobId());
    }
    @Override
    public void afterJob(JobExecution jobExecution) {
        logger.info("job 结束, id={}",jobExecution.getJobId());
    }
}

Step(ItemReader ItemProcessor ItemWriter)

step里面包含数据读取器,数据处理器,数据输出器三个小组件的的实现。

我们也是一个个拆解来进行编写。

文章前边说到,该篇实现的场景包含两种,一种是从csv文件读入大量数据进行处理,另一种是从数据库表读入大量数据进行处理。

从CSV文件读取数据

ItemReader

写在MyBatchConfig类里

/**
 * ItemReader定义:读取文件数据+entirty实体类映射
 * @return
 */
@Bean
public ItemReader reader(){
    // 使用FlatFileItemReader去读cvs文件,一行即一条数据
    FlatFileItemReader reader = new FlatFileItemReader();
    // 设置文件处在路径
    reader.setResource(new ClassPathResource("static/bloginfo.csv"));
    // entity与csv数据做映射
    reader.setLineMapper(new DefaultLineMapper() {
        {
            setLineTokenizer(new DelimitedLineTokenizer() {
                {
                    setNames(new String[]{"blogAuthor","blogUrl","blogTitle","blogItem"});
                }
            });
            setFieldSetMapper(new BeanWrapperFieldSetMapper() {
                {
                    setTargetType(BlogInfo.class);
                }
            });
        }
    });
    return reader;
}

简单代码解析:

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

对于数据读取器 ItemReader ,我们给它安排了一个读取监听器,创建 MyReadListener.java :

public class MyReadListener implements ItemReadListener {
    private Logger logger = LoggerFactory.getLogger(MyReadListener.class);
    @Override
    public void beforeRead() {
    }
    @Override
    public void afterRead(BlogInfo item) {
    }
    @Override
    public void onReadError(Exception ex) {
        try {
            logger.info(format("%s%n", ex.getMessage()));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

ItemProcessor

写在MyBatchConfig类里

/**
 * 注册ItemProcessor: 处理数据+校验数据
 * @return
 */
@Bean
public ItemProcessor processor(){
    MyItemProcessor myItemProcessor = new MyItemProcessor();
    // 设置校验器
    myItemProcessor.setValidator(myBeanValidator());
    return myItemProcessor;
}

数据处理器,是我们自定义的,里面主要是包含我们对数据处理的业务逻辑,并且我们设置了一些数据校验器,我们这里使用 JSR-303的Validator来作为校验器。

校验器

写在MyBatchConfig类里

/**
 * 注册校验器
 * @return
 */
@Bean
public MyBeanValidator myBeanValidator(){
    return new MyBeanValidator();
}

创建MyItemProcessor.java :

ps:里面我的数据处理逻辑是,获取出读取数据里面的每条数据的blogItem字段,如果是springboot,那就对title字段值进行替换。

其实也就是模拟一个简单地数据处理场景。

import com.example.batchdemo.pojo.BlogInfo;
import org.springframework.batch.item.validator.ValidatingItemProcessor;
import org.springframework.batch.item.validator.ValidationException;
public class MyItemProcessor extends ValidatingItemProcessor {
    @Override
    public BlogInfo process(BlogInfo item) throws ValidationException {
        /**
         * 需要执行super.process(item)才会调用自定义校验器
         */
        super.process(item);
        /**
         * 对数据进行简单的处理
         */
        if (item.getBlogItem().equals("springboot")) {
            item.setBlogTitle("springboot 系列还请看看我Jc");
        } else {
            item.setBlogTitle("未知系列");
        }
        return item;
    }
}

创建MyBeanValidator.java:

import org.springframework.batch.item.validator.ValidationException;
import org.springframework.batch.item.validator.Validator;
import org.springframework.beans.factory.InitializingBean;
import javax.validation.ConstraintViolation;
import javax.validation.Validation;
import javax.validation.ValidatorFactory;
import java.util.Set;
public class MyBeanValidator implements Validator, InitializingBean {
    private javax.validation.Validator validator;
    @Override
    public void validate(T value) throws ValidationException {
        /**
         * 使用Validator的validate方法校验数据
         */
        Set constraintViolations =
                validator.validate(value);
        if (constraintViolations.size() > 0) {
            StringBuilder message = new StringBuilder();
            for (ConstraintViolation constraintViolation : constraintViolations) {
                message.append(constraintViolation.getMessage() + "\n");
            }
            throw new ValidationException(message.toString());
        }
    }
    /**
     * 使用JSR-303的Validator来校验我们的数据,在此进行JSR-303的Validator的初始化
     * @throws Exception
     */
    @Override
    public void afterPropertiesSet() throws Exception {
        ValidatorFactory validatorFactory =
                Validation.buildDefaultValidatorFactory();
        validator = validatorFactory.usingContext().getValidator();
    }
}

ps:其实该篇文章没有使用这个数据校验器,大家想使用的话,可以在实体类上添加一些校验器的注解@NotNull @Max @Email等等。我偏向于直接在处理器里面进行处理,想把关于数据处理的代码都写在一块。

ItemWriter

写在MyBatchConfig类里

/**
 * ItemWriter定义:指定datasource,设置批量插入sql语句,写入数据库
 * @param dataSource
 * @return
 */
@Bean
public ItemWriter writer(DataSource dataSource){
    // 使用jdbcBcatchItemWrite写数据到数据库中
    JdbcBatchItemWriter writer = new JdbcBatchItemWriter();
    // 设置有参数的sql语句
    writer.setItemSqlParameterSourceProvider(new BeanPropertyItemSqlParameterSourceProvider());
    String sql = "insert into bloginfo "+" (blogAuthor,blogUrl,blogTitle,blogItem) "
            +" values(:blogAuthor,:blogUrl,:blogTitle,:blogItem)";
    writer.setSql(sql);
    writer.setDataSource(dataSource);
    return writer;
}

简单代码解析:

Spring Boot + Spring Batch 实现批处理任务,保姆级教程!

同样 对于数据读取器 ItemWriter ,我们给它也安排了一个输出监听器,创建 MyWriteListener.java:

import com.example.batchdemo.pojo.BlogInfo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.core.ItemWriteListener;
import java.util.List;
import static java.lang.String.format;
public class MyWriteListener implements ItemWriteListener {
    private Logger logger = LoggerFactory.getLogger(MyWriteListener.class);
    @Override
    public void beforeWrite(List
VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]