人工智能及其应用(蔡自兴)期末复习
人工智能及其应用(蔡自兴)期末复习
本文是基于郑州大学人工智能课程制作的复习笔记,教学内容基本很陈旧,应该很久都不会更新。
⭐️ 都是我们的复习重点,需要进行关注
人工智能太恶心了,内容太多了!
注:我只是按照我们的课件来进行复习,不要盲目相信我的主观观点!!! 每年教的老师是不一样的,课件也是不一样的!!! 我们当年的老师是 tz、wzc
😋 更多复习科目请查看: 2020级郑州大学物联网工程期末记录 😋
原Markdown文件获取请跳转:https://github.com/anda522/CourseReview
相关资料:
人工智能期末复习
人工智能复习题
人工智能模拟卷
人工智能期末练习题
1 ⭐️绪论
人工智能:人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能、计算机智能。
人工智能发展的三个阶段:
- 计算
- 感知
- 认知
⭐️人工智能发展时期:
-
孕育期 ( 1956年前):亚里士多德,莱布尼茨,图灵,莫克,麦克洛奇和皮兹,维纳
-
形成期 ( 1956-1970年):1956年第一次人工智能研讨会(达特茅斯会议),
-
暗淡期 ( 1966-1974年):过高预言
-
知识应用期 ( 1970-1988年):专家系统的出现
-
集成发展期 ( 1986年至今):AI技术进一步研究
⭐️人工智能学派:
- 符号主义(功能模拟方法):逻辑主义,以物理符号系统为原理,代表:纽厄尔,肖,西蒙,尼尔逊
- 连接主义(结构模拟方法):仿生学派,神经网络之间连接机制为原理,代表:卡洛克,皮茨,霍普菲尔德,鲁梅尔哈特
- 行为主义(行为模拟方法):控制论学派,类似于控制机器人,代表:布鲁克斯
人工智能应用:问题求解和博弈,逻辑推理和定理证明,计算智能,分布式人工智能和真体,自动程序设计,专家系统,机器学习,自然语言理解,机器人学,模式识别,机器视觉,神经网络,智能控制
人工智能系统分类:专家系统,模糊系统,神经网络系统,学习系统,仿生系统,群智能系统,多真体系统,混合智能系统
目标:
- 近期目标:建造智能计算机代替人类的部分智力劳动
- 远期目标:揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能
研究的基本内容:认知建模,知识表示,知识推理,知识应用,机器感知,机器思维,机器学习,机器行为,智能系统构建
2 知识表示
2.1 ⭐️状态空间表示
概念理解:状态,算符
状态表示(知道初始状态和目标状态),状态表示图的画法
相关问题:
- 野人传教士渡河问题
( a , b , c ) (a, b, c) (a,b,c)表示(左岸传教士人数,左岸野人数,左岸船数)
- 梵塔问题
状态: ( S A , S B ) (S_A, S_B) (SA,SB), S A S_A SA表示 A A A所在杆号, S B S_B SB表示 B B B所在杆号, S A , S B ∈ { 1 , 2 , 3 } S_A,S_B \in \{1, 2, 3\} SA,SB∈{1,2,3},全部状态为:
( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) (1,1), (1, 2), (1, 3), (2, 1), (2, 2),(2,3),(3,1),(3,2),(3,3) (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)
初始状态: ( 1 , 1 ) (1,1) (1,1),目标状态: ( 3 , 3 ) (3,3) (3,3)
状态空间图:
- 八数码问题
2.2 ⭐️归约表示(与或图)
需要理解:归约表示思路,与或图表示
- 梵塔问题(四阶为例)
假设用向量 ( D 4 , D 3 , D 2 , D 1 ) (D_4, D_{3},D_2, D_1) (D4,D3,D2,D1)表示从大到小的圆盘所在的柱子号,则
初始状态: ( 1 , 1 , 1 , 1 ) (1, 1, 1, 1) (1,1,1,1)
目标状态: ( 3 , 3 , 3 , 3 ) (3, 3, 3, 3) (3,3,3,3)
问题归约为子问题:
- 移动3,2,1号圆盘至2号柱子
- 移动4号圆盘至3号柱子
- 移动3,2,1号圆盘至3号柱子
归约图表示:
2.3 谓词逻辑表示
概念理解:谓词,项,谓词公式,原子公式,合式公式
合式公式性质:
自然语言转换成谓词:
-
人都会死
( ∀ x ) ( m a n ( x ) → d i e ( x ) ) (\forall x) (man(x) \to die(x)) (∀x)(man(x)→die(x))
-
有的人聪明
( ∃ x ) ( m a n ( x ) → c l e v e r ( x ) ) (\exist x) (man(x) \to clever(x)) (∃x)(man(x)→clever(x))
谓词推理:
下面的例子使用了 P ∨ Q ¬ P ∨ Q ⟹ Q ∨ Q = Q P \lor Q \hspace{1em} \neg P \lor Q \implies Q \lor Q = Q P∨Q¬P∨Q⟹Q∨Q=Q 消解推理规则
2.4 语义网络表示
常用语义联系:
推理机制:匹配和继承
2.5 框架表示
结构:
- 节点
- 槽:每个槽可有多个侧面,每个侧面可有多个值
- 值
推理机制:
- 匹配
- 填槽(查询,默认,继承,附加过程计算)
大学教师的框架:
2.6 ⭐️知识表示方法的联系
3 搜索推理
3.1 ⭐️盲目搜索(无信息搜索)
本小节没有加以整理,请看课件
- ⭐️深度优先搜素
- ⭐️宽(广)度优先搜索
- 等代价搜索(UCS):就是Dijkstra算法
- 有界深搜:就是限制深度的深搜
- 迭代加深算法(IDS)
知道OPEN表和CLOSED表的作用
3.2 ⭐️启发式搜索(有信息搜索)
按选择范围不同分为:全局择优搜索(A,A*)和局部择优搜素
f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x)
h ( x ) h(x) h(x):启发函数
搜索算法:
-
A算法: h ( x ) h(x) h(x)不做限制
-
A*算法: h ( x ) h(x) h(x)有限制
3.3 ⭐️消解原理(归结原理)
就是对几个子句推导出新的子句(几个公理推导出新的结论)
- ⭐️如何求子句集(将谓词演算公式化成子句集)P97
子句集特征:没有蕴涵词( → \rightarrow →)、等值词( ↔ , ≡ \leftrightarrow, \equiv ↔,≡), ¬ \neg ¬作用原子谓词,没有全称和存在量词,合取范式,元素之间变元不同,集合形式
- ⭐️消解推理规则
P ¬ P ∨ Q ⟹ Q P ∨ Q ¬ P ∨ Q ⟹ Q ∨ Q = Q ¬ P P ⟹ N I L ¬ P ∨ R ( P → R ) ¬ Q ∨ R ( Q → R ) ⟹ ¬ P ∨ Q ( P → Q ) P \hspace{1em} \neg P \lor Q \implies Q \\ P \lor Q \hspace{1em} \neg P \lor Q \implies Q \lor Q = Q \\ \neg P \hspace{1em} P \implies NIL \\ \neg P \lor R(P \to R) \hspace{1em} \neg Q \lor R(Q \to R) \implies \neg P \lor Q(P \to Q) P¬P∨Q⟹QP∨Q¬P∨Q⟹Q∨Q=Q¬PP⟹NIL¬P∨R(P→R)¬Q∨R(Q→R)⟹¬P∨Q(P→Q)
- 消解反演
消解通过反演来证明。将目标公式否定添加到命题公式集中,从中推导出一个空子句。(类似于反证法,否定结论,并将其作为条件,推导出一个空结论,即不可能满足的结论)
反演树的画法与理解
- 置换与合一的概念
置换: σ = { f ( a ) / x , f ( y ) / z } \sigma = \{f(a) / x , f(y) / z\} σ={f(a)/x,f(y)/z} 代表用 f ( a ) f(a) f(a)代替掉 x x x,用 f ( y ) f(y) f(y)代替掉 z z z。
合一:寻找一个置换,使两个表达式一致的过程。
3.4 规则演绎
- 产生式系统
产生式规则一般形式:
I F A 1 , A 2 , . . . , A n T H E N B IF \hspace{1em} A_1,A_2,...,A_n \hspace{1em} THEN \hspace{1em} B IFA1,A2,...,AnTHENB
逻辑蕴含式是产生式的一种特殊形式。
产生式系统的组成:
- 总数据库
- 产生式规则(规则库)
- 控制策略(推理机)
产生式系统的推理:正向推理,逆向推理,双向推理。
3.5 不确定性推理
三种不确定性程度:
- 知识不确定性
- 证据不确定性
- 结论不确定性
不确定性表示度量:
- 静态强度:知识的不确定性程度表示,(LS,LN)为知识的不确定性表示。
- 动态强度:证据的不确定性程度表示
3.5.1 ⭐️概率推理
条件概率公式:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
全概率公式:( A i A_i Ai构成一个完备事件组,互相独立,其总和为全集)
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum \limits_{i = 1}^n P(A_i)P(B|A_i) P(B)=i=1∑nP(Ai)P(B∣Ai)
贝叶斯公式:(先验概率 P ( H ) P(H) P(H),条件概率 P ( H ∣ E ) P(H|E) P(H∣E))
P ( H ∣ E ) = P ( H ) P ( E ∣ H ) P ( E ) P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ i P ( B i ) P ( A ∣ B i ) P ( H i ∣ E 1 E 2 ⋯ E m ) = P ( E 1 ∣ H i ) P ( E 2 ∣ H i ) ⋯ P ( E m ∣ H i ) P ( H i ) ∑ j = 1 n P ( E 1 ∣ H j ) P ( E 2 ∣ H j ) ⋯ P ( E m ∣ H j ) P ( H j ) P(H|E) = \frac{P(H)P(E|H)}{P(E)} \\ P(B_i | A) = \frac{P(B_i)P(A|B_i)}{\sum_i P(B_i) P(A|B_i)} \\ P(H_i | E_1E_2 \cdots E_m) = \frac{P(E_1|H_i)P(E_2|H_i) \cdots P(E_m|H_i)P(H_i)}{\sum \limits_{j = 1}^n P(E_1|H_j)P(E_2|H_j) \cdots P(E_m|H_j)P(H_j)} P(H∣E)=P(E)P(H)P(E∣H)P(Bi∣A)=∑iP(Bi)P(A∣Bi)P(Bi)P(A∣Bi)P(Hi∣E1E2⋯Em)=j=1∑nP(E1∣Hj)P(E2∣Hj)⋯P(Em∣Hj)P(Hj)P(E1∣Hi)P(E2∣Hi)⋯P(Em∣Hi)P(Hi)
3.5.2 ⭐️ 主观贝叶斯(?我们是没有考,但是你们就不一定了)
相关公式:
O ( X ) = P ( X ) 1 − P ( X ) O ( H ∣ E ) = L S ⋅ O ( H ) O ( H ∣ ¬ E ) = L N ⋅ O ( H ) O ( H ∣ S 1 , S 2 , ⋯ , S n ) = O ( H ∣ S 1 ) O ( H ) ⋅ O ( H ∣ S 2 ) O ( H ) ⋯ O ( H ∣ S n ) O ( H ) ⋅ O ( H ) O(X) = \frac{P(X)}{1 - P(X)} \\ O(H|E) = LS \cdot O(H) \\ O(H| \neg E) = LN \cdot O(H) \\ O(H|S_1, S_2, \cdots, S_n) = \frac{O(H|S_1)}{O(H)} \cdot \frac{O(H|S_2)}{O(H)} \cdots \frac{O(H|S_n)}{O(H)} \cdot O(H) O(X)=1−P(X)P(X)O(H∣E)=LS⋅O(H)O(H∣¬E)=LN⋅O(H)O(H∣S1,S2,⋯,Sn)=O(H)O(H∣S1)⋅O(H)O(H∣S2)⋯O(H)O(H∣Sn)⋅O(H)
EH公式:
P ( H ∣ S ) = { P ( H ∣ ¬ E ) + P ( H ) − P ( H ∣ ¬ E ) P ( E ) × P ( E ∣ S ) 0 ≤ P ( E ∣ S ) 0(2)
根据第一张图得到 P ( E ∣ S ) P(E|S) P(E∣S)与 C ( E ∣ S ) C(E|S) C(E∣S)的关系,记为式 ( 3 ) (3) (3)
根据第二张图得到 P ( H ∣ S ) P(H|S) P(H∣S)与 P ( E ∣ S ) P(E|S) P(E∣S)的关系,即为式 ( 1 ) (1) (1)
将式 ( 3 ) (3) (3)代入到式 ( 1 ) (1) (1)中,得到CP公式
3.5.3 ⭐️可信度方法
可信度表示知识或证据的不确定性,范围 [ − 1 , 1 ] [-1,1] [−1,1]
知识的不确定性表示:
if E then H (CF(H, E))
CF(H,E):是该条知识的可信度,称为可信度因子或规则强度,它指出当前提条件 E 所对应的证据为真时,它对结论为真的支持程度。
推理结论CF值计算:
C F ( H ) = C F ( H , E ) × m a x { 0 , C F ( E ) } CF(H) = CF(H, E) \times max\{0, CF(E) \} CF(H)=CF(H,E)×max{0,CF(E)}
重复结论CF值计算:
i f E 1 t h e n H ( C F ( H , E 1 ) ) i f E 2 t h e n H ( C F ( H , E 2 ) ) 则 C F 1 , 2 ( H ) = { C F 1 ( H ) + C F 2 ( H ) − C F 1 ( H ) × C F 2 ( H ) C F 1 ( H ) ≥ 0 , C F 2 ( H ) ≥ 0 C F 1 ( H ) + C F 2 ( H ) + C F 1 ( H ) × C F 2 ( H ) C F 1 ( H )
- 产生式系统
- 置换与合一的概念
- 消解反演
- ⭐️消解推理规则
- ⭐️如何求子句集(将谓词演算公式化成子句集)P97
-
- 梵塔问题(四阶为例)
- 八数码问题
- 梵塔问题
- 野人传教士渡河问题
-