Stable Diffusion | Gradio界面设计及webUI API调用

07-11 1393阅读

本文基于webUI API编写了类似于webUI的Gradio交互式界面,支持文生图/图生图(SD1.x,SD2.x,SDXL),Embedding,Lora,X/Y/Z Plot,ADetailer、ControlNet,超分放大(Extras),图片信息读取(PNG Info)。

1. 在线体验

本文代码已部署到百度飞桨AI Studio平台,以供大家在线体验Stable Diffusion ComfyUI/webUI 原版界面及自制Gradio界面。

项目链接:Stable Diffusion webUI 在线体验

2. 自制Gradio界面展示

文生图界面:

Stable Diffusion | Gradio界面设计及webUI API调用

Adetailer 设置界面:

Stable Diffusion | Gradio界面设计及webUI API调用

ControlNet 设置界面:

Stable Diffusion | Gradio界面设计及webUI API调用

X/Y/Z Plot 设置界面:

Stable Diffusion | Gradio界面设计及webUI API调用

图生图界面:

Stable Diffusion | Gradio界面设计及webUI API调用

图片放大界面:

Stable Diffusion | Gradio界面设计及webUI API调用

图片信息读取界面:

Stable Diffusion | Gradio界面设计及webUI API调用

3. Gradio界面设计及webUI API调用

import base64
import datetime
import io
import os
import re
import subprocess
import gradio as gr
import requests
from PIL import Image, PngImagePlugin
design_mode = 1
save_images = "Yes"
url = "http://127.0.0.1:7860"
if design_mode == 0:
    cmd = "netstat -tulnp"
    netstat_output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout.splitlines()
    for i in netstat_output:
        if "stable-diffus" in i:
            port = int(re.findall(r'\d+', i)[6])
            url = f"http://127.0.0.1:{port}"
output_dir = os.getcwd() + "/output/" + datetime.date.today().strftime("%Y-%m-%d")
os.makedirs(output_dir, exist_ok=True)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
default = {
    "prompt": "(best quality:1), (high quality:1), detailed/(extreme, highly, ultra/), realistic, 1girl/(beautiful, delicate, perfect/)",
    "negative_prompt": "(worst quality:1), (low quality:1), (normal quality:1), lowres, signature, blurry, watermark, duplicate, bad link, plump, bad anatomy, extra arms, extra digits, missing finger, bad hands, bad feet, deformed, error, mutation, text",
    "clip_skip": 1,
    "width": 512,
    "height": 768,
    "size_step": 64,
    "steps": 20,
    "cfg": 7,
    "ad_nums": 2,
    "ad_model": ["face_yolov8n.pt", "hand_yolov8n.pt"],
    "cn_nums": 3,
    "cn_type": "Canny",
    "gallery_height": 600,
    "lora_weight": 0.8,
    "hidden_models": ["stable_cascade_stage_c", "stable_cascade_stage_b", "svd_xt_1_1", "control_v11p_sd15_canny", "control_v11f1p_sd15_depth", "control_v11p_sd15_openpose"]
}
samplers = []
response = requests.get(url=f"{url}/sdapi/v1/samplers").json()
for i in range(len(response)):
    samplers.append(response[i]["name"])
schedulers = []
response = requests.get(url=f"{url}/sdapi/v1/schedulers").json()
for i in range(len(response)):
    schedulers.append(response[i]["label"])
upscalers = []
response = requests.get(url=f"{url}/sdapi/v1/upscalers").json()
for i in range(len(response)):
    upscalers.append(response[i]["name"])
sd_models = []
sd_models_list = {}
response = requests.get(url=f"{url}/sdapi/v1/sd-models").json()
for i in range(len(response)):
    path, sd_model = os.path.split(response[i]["title"])
    sd_model_name, sd_model_extension = os.path.splitext(sd_model)
    if not sd_model_name in default["hidden_models"]:
        sd_models.append(sd_model)
        sd_models_list[sd_model] = response[i]["title"]
sd_models = sorted(sd_models)
sd_vaes = ["Automatic", "None"]
response = requests.get(url=f"{url}/sdapi/v1/sd-vae").json()
for i in range(len(response)):
    sd_vaes.append(response[i]["model_name"])
embeddings = []
response = requests.get(url=f"{url}/sdapi/v1/embeddings").json()
for key in response["loaded"]:
    embeddings.append(key)
extensions = []
response = requests.get(url=f"{url}/sdapi/v1/extensions").json()
for i in range(len(response)):
    extensions.append(response[i]["name"])
loras = []
loras_name = {}
loras_activation_text = {}
response = requests.get(url=f"{url}/sdapi/v1/loras").json()
for i in range(len(response)):
    lora_name = response[i]["name"]
    lora_info = requests.get(url=f"{url}/tacapi/v1/lora-info/{lora_name}").json()
    if lora_info and "sd version" in lora_info:
        lora_type = lora_info["sd version"]
        lora_name_type = f"{lora_name} ({lora_type})"
    else:
        lora_name_type = f"{lora_name}"
    loras.append(lora_name_type)
    loras_name[lora_name_type] = lora_name
    if "activation text" in loras_activation_text:
        loras_activation_text[lora_name_type] = lora_info["activation text"]
xyz_args = {}
xyz_plot_types = {}
last_choice = "Size"
response = requests.get(url=f"{url}/sdapi/v1/script-info").json()
for i in range(len(response)):
    if response[i]["name"] == "x/y/z plot":
        if response[i]["is_img2img"] == False:
            xyz_plot_types["txt2img"] = response[i]["args"][0]["choices"]
            choice_index = xyz_plot_types["txt2img"].index(last_choice) + 1
            xyz_plot_types["txt2img"] = xyz_plot_types["txt2img"][:choice_index]
        else:
            xyz_plot_types["img2img"] = response[i]["args"][0]["choices"]
            choice_index = xyz_plot_types["img2img"].index(last_choice) + 1
            xyz_plot_types["img2img"] = xyz_plot_types["img2img"][:choice_index]
if "adetailer" in extensions:
    ad_args = {"txt2img": {}, "img2img": {}}
    ad_skip_img2img = False
    ad_models = ["None"]
    response = requests.get(url=f"{url}/adetailer/v1/ad_model").json()
    for key in response["ad_model"]:
        ad_models.append(key)
if "sd-webui-controlnet" in extensions:
    cn_args = {"txt2img": {}, "img2img": {}}
    cn_types = []
    cn_types_list = {}
    response = requests.get(url=f"{url}/controlnet/control_types").json()
    for key in response["control_types"]:
        cn_types.append(key)
        cn_types_list[key] = response["control_types"][key]
    cn_default_type = default["cn_type"]
    cn_module_list = cn_types_list[cn_default_type]["module_list"]
    cn_model_list = cn_types_list[cn_default_type]["model_list"]
    cn_default_option = cn_types_list[cn_default_type]["default_option"]
    cn_default_model = cn_types_list[cn_default_type]["default_model"]
def save_image(image, part1, part2):
    counter = 1
    image_name = f"{part1}-{part2}-{counter}.png"
    while os.path.exists(os.path.join(output_dir, image_name)):
        counter += 1
        image_name = f"{part1}-{part2}-{counter}.png"
    image_path = os.path.join(output_dir, image_name)
    image_metadata = PngImagePlugin.PngInfo()
    for key, value in image.info.items():
        if isinstance(key, str) and isinstance(value, str):
            image_metadata.add_text(key, value)
    image.save(image_path, format="PNG", pnginfo=image_metadata)
def pil_to_base64(image_pil):
    buffer = io.BytesIO()
    image_pil.save(buffer, format="png")
    image_buffer = buffer.getbuffer()
    image_base64 = base64.b64encode(image_buffer).decode("utf-8")
    return image_base64
def base64_to_pil(image_base64):
    image_binary = base64.b64decode(image_base64)
    image_pil = Image.open(io.BytesIO(image_binary))
    return image_pil
def format_prompt(prompt):
    prompt = re.sub(r"\s+,", ",", prompt)
    prompt = re.sub(r"\s+", " ", prompt)
    prompt = re.sub(",,+", ",", prompt)
    prompt = re.sub(",", ", ", prompt)
    prompt = re.sub(r"\s+", " ", prompt)
    prompt = re.sub(r"^,", "", prompt)
    prompt = re.sub(r"^ ", "", prompt)
    prompt = re.sub(r" $", "", prompt)
    prompt = re.sub(r",$", "", prompt)
    prompt = re.sub(": ", ":", prompt)
    return prompt
def post_interrupt():
    global interrupt
    interrupt = True
    requests.post(url=f"{url}/sdapi/v1/interrupt").json()
def gr_update_visible(visible):
    return gr.update(visible=visible)
def ordinal(n: int) -> str:
    d = {1: "st", 2: "nd", 3: "rd"}
    return str(n) + ("th" if 11 = 0:
        gen_type = "img2img"
        if input_image is None:
            return None, None, None
    else:
        gen_type = "txt2img"
    progress(0, desc=f"Loading {sd_model}")
    payload = {
        "sd_model_checkpoint": sd_models_list[sd_model],
        "sd_vae": sd_vae,
        "CLIP_stop_at_last_layers": clip_skip,
        "randn_source": randn_source
    }
    requests.post(url=f"{url}/sdapi/v1/options", json=payload)
    if interrupt == True:
            return None, None, None
    progress(0, desc="Processing...")
    images = []
    images_info = []
    if not input_image is None:
        input_image = pil_to_base64(input_image)
    for i in range(batch_count):
        payload = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "batch_size": batch_size,
            "seed": seed,
            "sampler_name": sampler_name,
            "scheduler": scheduler,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "width": width,
            "height": height,
            "init_images": [input_image],
            "denoising_strength": denoising_strength,
            "alwayson_scripts": {}
        }
        if "adetailer" in extensions:
            payload = add_adetailer(payload, gen_type)
        if "sd-webui-controlnet" in extensions:
            payload = add_controlnet(payload, gen_type)
        payload = add_xyz_plot(payload, gen_type)
        response = requests.post(url=f"{url}/sdapi/v1/{gen_type}", json=payload)
        images_base64 = response.json()["images"]
        for j in range(len(images_base64)):
            image_pil = base64_to_pil(images_base64[j])
            images.append(image_pil)
            image_info = get_png_info(image_pil)
            images_info.append(image_info)
            if image_info == "None":
                if save_images == "Yes":
                    if gen_type in xyz_args:
                        save_image(image_pil, "XYZ_Plot", "grid")
                    else:
                        save_image(image_pil, "ControlNet", "detect")
            else:
                seed = re.findall("Seed: [0-9]+", image_info)[0].split(": ")[-1]
                if save_images == "Yes":
                    save_image(image_pil, sd_model, seed)
        seed = int(seed) + 1
        progress((i+1)/batch_count, desc=f"Batch count: {(i+1)}/{batch_count}")
        if interrupt == True:
            return images, images_info, datetime.datetime.now()
    return images, images_info, datetime.datetime.now()
def gen_clear_geninfo():
    return None
def gen_update_geninfo(images_info):
    if images_info == [] or images_info is None:
        return None
    return images_info[0]
def gen_update_selected_geninfo(images_info, evt: gr.SelectData):
    return images_info[evt.index]
def gen_blocks(gen_type):
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(placeholder="Prompt", show_label=False, value=default["prompt"], lines=3)
                negative_prompt = gr.Textbox(placeholder="Negative prompt", show_label=False, value=default["negative_prompt"], lines=3)
                if gen_type == "txt2img":
                    input_image = gr.Image(visible=False)
                else:
                    input_image = gr.Image(type="pil")
                with gr.Tab("Generation"):
                    with gr.Row():
                        sd_model = gr.Dropdown(sd_models, label="SD Model", value=sd_models[0])
                        sd_vae = gr.Dropdown(sd_vaes, label="SD VAE", value=sd_vaes[0])
                        clip_skip = gr.Slider(minimum=1, maximum=12, step=1, label="Clip skip", value=default["clip_skip"])
                    with gr.Row():
                        sampler_name = gr.Dropdown(samplers, label="Sampling method", value=samplers[0])
                        scheduler = gr.Dropdown(schedulers, label="Schedule type", value=schedulers[0])
                        steps = gr.Slider(minimum=1, maximum=100, step=1, label="Sampling steps", value=default["steps"])
                    with gr.Row():
                        width = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Width", value=default["width"])
                        batch_size = gr.Slider(minimum=1, maximum=8, step=1, label="Batch size", value=1)
                    with gr.Row():
                        height = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Height", value=default["height"])
                        batch_count = gr.Slider(minimum=1, maximum=100, step=1, label="Batch count", value=1)
                    with gr.Row():
                        cfg_scale = gr.Slider(minimum=1, maximum=30, step=0.5, label="CFG Scale", value=default["cfg"])
                        if gen_type == "txt2img":
                            denoising_strength = gr.Slider(minimum=-1, maximum=1, step=1, value=-1, visible=False)
                        else:
                            denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.7)
                    with gr.Row():
                        randn_source = gr.Dropdown(["CPU", "GPU"], label="RNG", value="CPU")
                        seed = gr.Textbox(label="Seed", value=-1)
                if "adetailer" in extensions:
                    with gr.Tab("ADetailer"):
                        if gen_type == "img2img":
                            with gr.Row():
                                ad_skip_img2img = gr.Checkbox(label="Skip img2img", visible=True)
                                ad_skip_img2img.change(fn=ad_update_skip_img2img, inputs=ad_skip_img2img, outputs=None)
                        for i in range(default["ad_nums"]):
                            with gr.Tab(f"ADetailer {ordinal(i + 1)}"): ad_blocks(i, gen_type)
                if "sd-webui-controlnet" in extensions:
                    with gr.Tab("ControlNet"):
                        for i in range(default["cn_nums"]):
                            with gr.Tab(f"ControlNet Unit {i}"): cn_blocks(i, gen_type)
                if not loras == [] or not embeddings == []:
                    with gr.Tab("Extra Networks"):
                        if not loras == []:
                            lora = gr.Dropdown(loras, label="Lora", multiselect=True, interactive=True)
                            lora.change(fn=add_lora, inputs=[prompt, lora], outputs=prompt)
                        if not embeddings == []:
                            embedding = gr.Dropdown(embeddings, label="Embedding", multiselect=True, interactive=True)
                            embedding.change(fn=add_embedding, inputs=[negative_prompt, embedding], outputs=negative_prompt)
                with gr.Tab("X/Y/Z plot"): xyz_blocks(gen_type)
            with gr.Column():
                with gr.Row():
                    btn = gr.Button("Generate | 生成", elem_id="button")
                    btn2 = gr.Button("Interrupt | 终止")
                gallery = gr.Gallery(preview=True, height=default["gallery_height"])
                image_geninfo = gr.Markdown()
                images_geninfo = gr.State()
                update_geninfo = gr.Textbox(visible=False)
            gen_inputs = [input_image, sd_model, sd_vae, sampler_name, scheduler, clip_skip, steps, width, batch_size, height, batch_count, cfg_scale, randn_source, seed, denoising_strength, prompt, negative_prompt]
            btn.click(fn=gen_clear_geninfo, inputs=None, outputs=image_geninfo)
            btn.click(fn=generate, inputs=gen_inputs, outputs=[gallery, images_geninfo, update_geninfo])
            btn2.click(fn=post_interrupt, inputs=None, outputs=None)
            gallery.select(fn=gen_update_selected_geninfo, inputs=images_geninfo, outputs=image_geninfo)
            update_geninfo.change(fn=gen_update_geninfo, inputs=images_geninfo, outputs=image_geninfo)
    return demo
def extras(input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight):
    if input_image is None:
        return None
    input_image = pil_to_base64(input_image)
    if enable_gfpgan == False:
        gfpgan_visibility = 0
    if enable_codeformer == False:
        codeformer_visibility = 0
    payload = {
        "gfpgan_visibility": gfpgan_visibility,
        "codeformer_visibility": codeformer_visibility,
        "codeformer_weight": codeformer_weight,
        "upscaling_resize": upscaling_resize,
        "upscaler_1": upscaler_1,
        "upscaler_2": upscaler_2,
        "extras_upscaler_2_visibility": extras_upscaler_2_visibility,
        "image": input_image
    }
    response = requests.post(url=f"{url}/sdapi/v1/extra-single-image", json=payload)
    images_base64 = response.json()["image"]
    image_pil = base64_to_pil(images_base64)
    if save_images == "Yes":
        save_image(image_pil, "Extras", "image")
    return image_pil
def extras_blocks():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil")
                with gr.Row():
                    upscaler_1 = gr.Dropdown(upscalers, label="Upscaler 1", value="R-ESRGAN 4x+")
                    upscaler_2 = gr.Dropdown(upscalers, label="Upscaler 2", value="None")
                with gr.Row():
                    upscaling_resize = gr.Slider(minimum=1, maximum=8, step=0.05, label="Scale by", value=4)
                    extras_upscaler_2_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="Upscaler 2 visibility", value=0)
                enable_gfpgan = gr.Checkbox(label="Enable GFPGAN")
                gfpgan_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="GFPGAN Visibility", value=1)
                enable_codeformer = gr.Checkbox(label="Enable CodeFormer")
                codeformer_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="CodeFormer Visibility", value=1)
                codeformer_weight = gr.Slider(minimum=0, maximum=1, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0)
            with gr.Column():
                with gr.Row():
                    btn = gr.Button("Generate | 生成", elem_id="button")
                    btn2 = gr.Button("Interrupt | 终止")
                extra_image = gr.Image(label="Extras image")
            btn.click(fn=extras, inputs=[input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight], outputs=extra_image)
            btn2.click(fn=post_interrupt, inputs=None, outputs=None)
    return demo
def get_png_info(image_pil):
    image_info=[]
    if image_pil is None:
        return None
    for key, value in image_pil.info.items():
        image_info.append(value)
    if not image_info == []:
        image_info = image_info[0]
        image_info = re.sub(r"", image_info)
        image_info = re.sub(r"\n", "
", image_info) else: image_info = "None" return image_info def png_info_blocks(): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_image = gr.Image(value=None, type="pil") with gr.Column(): png_info = gr.Markdown() input_image.change(fn=get_png_info, inputs=input_image, outputs=png_info) return demo with gr.Blocks(css="#button {background: #FFE1C0; color: #FF453A} .block.padded:not(.gradio-accordion) {padding: 0 !important;} div.form {border-width: 0; box-shadow: none; background: white; gap: 0.5em;}") as demo: with gr.Tab("txt2img"): gen_blocks("txt2img") with gr.Tab("img2img"): gen_blocks("img2img") with gr.Tab("Extras"): extras_blocks() with gr.Tab("PNG Info"): png_info_blocks() demo.queue(concurrency_count=100).launch(inbrowser=True)
VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]