pytorch通过 tensorboardX 调用 Tensorboard 进行可视化
示例
(图片来源网络,侵删)
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms from tensorboardX import SummaryWriter # 定义神经网络模型 class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3) self.fc = nn.Linear(32*26*26, 10) def forward(self, x): x = self.conv1(x) x = x.view(x.size(0), -1) x = self.fc(x) return x # 数据预处理和加载 transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) # 初始化模型、损失函数和优化器 model = SimpleCNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 创建 Summary
文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。