基于Spark的气象数据处理与分析
文章目录
- 一、实验环境
- 二、实验数据介绍
- 三、数据获取
- 1.观察数据获取方式
- 2.数据爬取
- 3.数据存储
- 4.数据读取
- 5.数据结构
- 6.爬虫过程截图
- 四、数据分析
- 1.计算各个城市过去24小时累积雨量
- 2.计算各个城市当日平均气温
- 3.计算各个城市当日平均湿度
- 4.计算各个城市当日平均风速
- 五、数据可视化
- 六、数据以及源代码
- 1.爬取的数据截图:
- 2.爬虫代码
- 3.Spark分析代码:
- 附录:csv文件、源代码等
本实验采用Python语言,从网页爬取气象数据,并使用大数据处理框架Spark对气象数据进行处理分析,并对分析结果进行可视化。
一、实验环境
(1)Linux: Ubuntu 20.04
(2)Python: 3.6
(3)Spark: 3.2.0
(4)pycharm
安装完上述环境以后,为了支持Python可视化分析,还需要执行如下命令安装新的组件:
二、实验数据介绍
本次实验所采用的数据,从中央气象台官方网站(网址:http://www.nmc.cn/)爬取,主要是最近24小时各个城市的天气数据,包括时间点(整点)、整点气温、整点降水量、风力、整点气压、相对湿度等。正常情况下,每个城市会对应24条数据(每个整点一条)。数据规模达到2429个城市,58297条数据,有部分城市部分时间点数据存在缺失或异常。限于本次大作业时间有限,没有办法全面分析这些数据,大作业中主要计算分析了各个城市过去24小时的平均气温和降水量情况。
图 1 中央气象台官网
图 2 爬取的表格passed_weather_ALL.csv信息
三、数据获取
1.观察数据获取方式
打开中央气象台官方网站(网址:http://www.nmc.cn/),任意点击左侧栏“热点城市”中的一个城市。打开火狐(Firefox)浏览器或者谷歌(chrome)浏览器的Web控制台。通过切换“省份”和“城市”,我们可以发现,网页中的数据是以json字符串格式异步地从服务器传送。可以发现以下数据和请求URL的关系。
请求URL 传回数据
http://www.nmc.cn/f/rest/province 省份数据
http://www.nmc.cn/f/rest/province/+省份三位编码 某个省份的城市数据
http://www.nmc.cn/f/rest/passed/+城市编号 某个城市最近24小时整点天气数据
由于省份三位编码(如福建省编码为“ABJ”)需要从省份数据获得中获得,城市编号需要从城市数据获得(如福州市编号为“58847”),所以为了获得各个城市最近24小时整点天气数据,依次爬取省份数据、城市数据、最近24小时整点数据。
2.数据爬取
由于可以直接通过访问请求URL,传回的响应的数据部分即是json格式的数据,所以只需要调用python的urllib.request, urllib.error, urllib.parse库中相关函数,对上述URL进行请求即可。不需要像平常爬取HTML网页时还需要对网页源码进行解析,查找相关数据。唯一需要注意的是,有些城市可能不存在或者全部缺失最近24小时整点数据,需要进行过滤,以免出错。
3.数据存储
虽然上一步获取的json数据可以直接存储并可使用SparkSession直接读取,但是为了方便观察数据结构、辨识异常数据、对数据增加部分提示信息,爬取后的数据进行了一些处理之后,保存成了csv格式,包括省份数据(province.csv)、城市数据(city.csv)、各个城市最近24小时整点天气数据(passed_weather_ALL.csv)。由于所有城市过去24小时整点天气数据数量太多,为了避免内存不足,每爬取50个城市的数据后,就会进行一次保存。
4.数据读取
因为各个城市最近24小时整点天气数据体量较大,每次爬取需要半小时以上,为了提高实验效率,只会进行一次数据爬取。此后会直接读取第一次实验数据。如果需要重新爬取数据,需要手动删除已有数据,即删除input文件夹下province.csv、city.csv、passed_weather_ALL.csv。
5.数据结构
最后保存的各个城市最近24小时整点天气数据(passed_weather_ALL.csv)每条数据各字段含义如下所示,这里仅列出实验中使用部分。
字段 含义
province 城市所在省份(中文)
city_index 城市序号(计数)
city_name 城市名称(中文)
city_code 城市编号
time 时间点(整点)
temperature 气温
rain1h 过去1小时降雨量
6.爬虫过程截图
开始爬虫
运行中的截图:
爬取完毕:
四、数据分析
数据分析主要使用Spark SQL相关知识与技术,对各个城市过去24小时累积降雨量和当日平均气温进行了计算和排序。
1.计算各个城市过去24小时累积雨量
思路:按照城市对数据进行分组,对每个城市的rain1h字段进行分组求和。
特别说明:由于获取数据所需时间较长,天气数据的时间跨度可能略有不一致,这里为了简化操作没有筛选出具有相同时间跨度的数据再进行计算。
相关步骤如下:
(1)创建SparkSession对象spark;
(2)使用spark.read.csv(filename)读取passed_weather_ALL.csv数据生成Dateframe df;
(3)对df进行操作:使用Dateframe的select方法选择province,city_name,city_code,rain1h字段,并使用Column对象的cast(dateType)方法将rain1h转成数值型,再使用Dateframe的filter方法筛选出rain1h小于1000的记录(大于1000是异常数据),得到新的Dateframe df_rain;
(4)对df_rain进行操作:使用Dateframe的groupBy操作按照province,city_name,city_code的字段分组,使用agg方法对rain1h字段进行分组求和得到新的字段rain24h(过去24小时累积雨量),使用sort方法按照rain24h降序排列,经过上述操作得到新的Dateframe df_rain_sum
(5)对df_rain_sum调用cache()方法将此前的转换关系进行缓存,提高性能
(6)对df_rain_sum调用coalesce()将数据分区数目减为1,并使用write.csv(filename)方法将得到的数据持久化到本地文件。
(7)对df_rain_sum调用head()方法取前若干条数据(即24小时累积降水量Top-N的列表)供数据可视化使用。
本部分分析对应的具体代码如下:
def passed_rain_analyse(filename): # 计算各个城市过去24小时累积雨量 print("begin to analyse passed rain") spark = SparkSession.builder.master("local").appName("passed_rain_analyse").getOrCreate() df = spark.read.csv(filename, header=True) df_rain = df.select(df['province'], df['city_name'], df['city_code'], df['rain1h'].cast(DecimalType(scale=1))) \ .filter(df['rain1h']
2.计算各个城市当日平均气温
思路:根据国家标准(《地面气象服务观测规范》),日平均气温取四时次数据的平均值,四时次数据为:02时、08时、14时、20时。据此,应该先筛选出各个时次的气温数据,再按照城市对数据进行分组,对每个城市的tempeature字段进行分组求平均。
特别说明:为了能获取到上述一天的四个时次的天气数据,建议在当天的20时30分后再爬取数据。
相关步骤如下:
(1)创建SparkSession对象spark;
(2)使用spark.read.csv(filename)读取passed_weather_ALL.csv数据生成Dateframe df;
(3)对df进行操作:使用Dateframe的select方法选择province,city_name,city_code,temperature字段,并使用库pyspark.sql.functions中的date_format(col,pattern)方法和hour(col)将time字段转换成date(日期)字段和hour(小时)字段,(time字段的分秒信息无用),,得到新的Dateframe df_temperature;
(4)对df_temperature进行操作:使用Dateframe的filter操作过滤出hour字段在[2,8,14,20]中的记录,经过上述操作得到新的Dateframe df_4point_temperature
(5)对df_4point_temperature进行操作:使用Dateframe的groupBy操作按照province,city_name,city_code,date字段分组,使用agg方法对temperature字段进行分组计数和求和(求和字段命名为avg_temperature),使用filter方法过滤出分组计数为4的记录(确保有4个时次才能计算日平均温),使用sort方法按照avg_temperature降序排列,再筛选出需要保存的字段province,city_name,city_code,date,avg_temperature(顺便使用库pyspark.sql.functions中的format_number(col,precision)方法保留一位小数),经过上述操作得到新的Dateframe df_avg_temperature
(6)对df_avg_temperature调用cache()方法将此前的转换关系进行缓存,提高性能
(7)对df_avg_temperature调用coalesce()将数据分区数目减为1,并使用write.json(filename)方法将得到的数据持久化到本地文件。
(8)对df_rain_sum调用collect()方法取将Dateframe转换成list,方便后续进行数据可视化。
本部分分析对应的具体代码如下:
def passed_temperature_analyse(filename): print("begin to analyse passed temperature") spark = SparkSession.builder.master("local").appName("passed_temperature_analyse").getOrCreate() df = spark.read.csv(filename, header=True) df_temperature = df.select( # 选择需要的列 df['province'], df['city_name'], df['city_code'], df['temperature'].cast(DecimalType(scale=1)), F.date_format(df['time'], "yyyy-MM-dd").alias("date"), # 得到日期数据 F.hour(df['time']).alias("hour") # 得到小时数据 ) # 筛选四点时次 df_4point_temperature = df_temperature.filter(df_temperature['hour'].isin([2, 8, 12, 20])) # df_4point_temperature.printSchema() df_avg_temperature = df_4point_temperature.groupBy("province", "city_name", "city_code", "date") \ .agg(F.count("temperature"), F.avg("temperature").alias("avg_temperature")) \ .filter("count(temperature) = 4") \ .sort(F.asc("avg_temperature")) \ .select("province", "city_name", "city_code", "date", F.format_number('avg_temperature', 1).alias("avg_temperature")) df_avg_temperature.cache() avg_temperature_list = df_avg_temperature.collect() df_avg_temperature.coalesce(1).write.json("file:///home/hadoop/PythonCode/SparkAnalysis/passed_temperature_analyse.json") print("end analysing passed temperature") return avg_temperature_list[0:10]
3.计算各个城市当日平均湿度
具体步骤与计算计算各个城市当日平均气温类似;
代码:
def passed_humidity_analyse(filename): print("begin to analyse passed humidity") spark = SparkSession.builder.master("local").appName("passed_humidity_analyse").getOrCreate() df = spark.read.csv(filename, header=True) df_humidity = df.select( # 选择需要的列 df['province'], df['city_name'], df['city_code'], df['humidity'].cast(DecimalType(scale=1)), F.date_format(df['time'], "yyyy-MM-dd").alias("date"), # 得到日期数据 F.hour(df['time']).alias("hour") # 得到小时数据 ) # 筛选四点时次 df_4point_humidity = df_humidity.filter(df_humidity['hour'].isin([2, 8, 12, 20])) # df_4point_humidity.printSchema() df_avg_humidity = df_4point_humidity.groupBy("province", "city_name", "city_code", "date") \ .agg(F.count("humidity"), F.avg("humidity").alias("avg_humidity")) \ .filter("count(humidity) = 4") \ .sort(F.asc("avg_humidity")) \ .select("province", "city_name", "city_code", "date", F.format_number('avg_humidity', 1).alias("avg_humidity")) df_avg_humidity.cache() avg_humidity_list = df_avg_humidity.collect() df_avg_humidity.coalesce(1).write.json("file:///home/hadoop/PythonCode/SparkAnalysis/passed_humidity_analyse.json") print("end analysing passed analyse") return avg_humidity_list[0:10]
4.计算各个城市当日平均风速
具体步骤与计算计算各个城市当日平均气温类似;
代码:
def passed_windSpeed_analyse(filename): print("begin to analyse passed windSpeed") spark = SparkSession.builder.master("local").appName("passed_windSpeed_analyse").getOrCreate() df = spark.read.csv(filename, header=True) df_windSpeed = df.select( # 选择需要的列 df['province'], df['city_name'], df['city_code'], df['windSpeed'].cast(DecimalType(scale=1)), F.date_format(df['time'], "yyyy-MM-dd").alias("date"), # 得到日期数据 F.hour(df['time']).alias("hour") # 得到小时数据 ) # 筛选四点时次 df_4point_windSpeed = df_windSpeed.filter(df_windSpeed['hour'].isin([2, 8, 12, 20])) # df_4point_windSpeed.printSchema() df_avg_windSpeed = df_4point_windSpeed.groupBy("province", "city_name", "city_code", "date") \ .agg(F.count("windSpeed"), F.avg("windSpeed").alias("avg_windSpeed")) \ .filter("count(windSpeed) = 4") \ .sort(F.asc("avg_windSpeed")) \ .select("province", "city_name", "city_code", "date", F.format_number('avg_windSpeed', 1).alias("avg_windSpeed")) df_avg_windSpeed.cache() avg_windSpeed_list = df_avg_windSpeed.collect() df_avg_windSpeed.coalesce(1).write.json("file:///home/hadoop/PythonCode/SparkAnalysis/passed_windSpeed_analyse.json") print("end analysing passed windSpeed") return avg_windSpeed_list[0:10]
五、数据可视化
数据可视化使用python matplotlib库。可使用pip命令安装。也可以pycharm直接安装。
绘制过程大体如下:
第一步,应当设置字体,这里提供了黑体的字体文件simhei.tff。否则坐标轴等出现中文的地方是乱码。
第二步,设置数据(累积雨量或者日平均气温)和横轴坐标(城市名称),配置直方图。
第三步,配置横轴坐标位置,设置纵轴坐标范围
第四步,配置横纵坐标标签
第五步,配置每个条形图上方显示的数据
第六步,根据上述配置,画出直方图。
画图部分对应的运行截图如下:
保存的matplotlib作的图:
六、数据以及源代码
1.爬取的数据截图:
city.csv
passed_weather_ALL.csv
province.csv
2.爬虫代码
# -*- coding: utf-8 -*- import urllib.request, urllib.error, urllib.parse import json import csv import os import time import random import socket class Crawler: def get_html(self, url): head = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36" } request = urllib.request.Request(url, headers=head) NET_STATUS = False while not NET_STATUS: try: # url = 'http://www.nmc.cn/f/rest/province' response = urllib.request.urlopen(request, timeout=5) html = response.read().decode("utf-8") return html except socket.timeout: print('NET_STATUS is not good') NET_STATUS = False # def get_html(self, url): # 得到指定一个URL的网页内容 # head = { # "User-Agent": "Mozilla/5.0(Windows NT 10.0;Win64;x64) AppleWebKit/537.36(KHTML, likeGecko) Chrome / 89.0.4389.90Safari / 537.36" # } # request = urllib.request.Request(url, headers=head) # try: # response = urllib.request.urlopen(request, timeout=5) # html = response.read().decode("utf-8") # # print(html) # except urllib.error.URLError as e: # if hasattr(e, "code"): # print(e.code) # if hasattr(e, "reason"): # print(e.reason) # return html def parse_json(self, url): obj = self.get_html(url) if obj: json_obj = json.loads(obj) else: json_obj = list() # print json_obj # for obj in json_obj: # print obj # print chardet.detect(obj['name']) return json_obj # soup = BeautifulSoup(html_doc,"html.parser",from_encoding='utf-8') # links = soup.find_all('a') # print "all links" # for link in links: # print link.name,link['href'] def write_csv(self, file, data): if data: print("begin to write to " + file) with open(file, 'a+', newline='') as f: # f.write(codecs.BOM_UTF8) f_csv = csv.DictWriter(f, list(data[0].keys())) if not os.path.exists(file): f_csv.writeheader() f_csv.writerows(data) # writerows()将一个二维列表中的每一个列表写为一行。 print("end to write to " + file) def write_header(self, file, data): if data: print("begin to write to " + file) with open(file, 'a+', newline='') as f: # f.write(codecs.BOM_UTF8) f_csv = csv.DictWriter(f, list(data[0].keys())) f_csv.writeheader() f_csv.writerows(data) print("end to write to " + file) def write_row(self, file, data): if data: print("begin to write to " + file) with open(file, 'a+', newline='') as f: # f.write(codecs.BOM_UTF8) f_csv = csv.DictWriter(f, list(data[0].keys())) # f_csv.writeheader() f_csv.writerows(data) print("end to write to " + file) def read_csv(self, file): print("begin to read " + file) with open(file, 'r') as f: data = csv.DictReader(f) print("end to read " + file) return list(data) def get_provinces(self): province_file = 'input/province.csv' if not os.path.exists(province_file): # 如果没有省份文件,开始爬取城市信息 print("begin crawl province") provinces = self.parse_json('http://www.nmc.cn/f/rest/province') print("end crawl province") self.write_csv(province_file, provinces) else: provinces = self.read_csv(province_file) return provinces def get_cities(self): # 获取城市 city_file = 'input/city.csv' if not os.path.exists(city_file): # 如果没有城市文件,开始爬取城市信息 cities = list() print("begin crawl city") for province in self.get_provinces(): # 循环34个省份 print(province['name']) url = province['url'].split('/')[-1].split('.')[0] cities.extend(self.parse_json('http://www.nmc.cn/f/rest/province/' + url)) self.write_csv(city_file, cities) print("end crawl city") else: cities = self.read_csv(city_file) return cities def get_passed_weather(self, province): weather_passed_file = 'input/passed_weather_' + province + '.csv' if os.path.exists(weather_passed_file): return passed_weather = list() count = 0 if province == 'ALL': print("begin crawl passed weather") # 开始爬取历史天气 for city in self.get_cities(): print(city['province'] + ' ' + city['city'] + ' ' + city['code']) data = self.parse_json('http://www.nmc.cn/f/rest/passed/' + city['code']) if data: count = count + 1 for item in data: item['city_code'] = city['code'] item['province'] = city['province'] item['city_name'] = city['city'] item['city_index'] = str(count) passed_weather.extend(data) # time.sleep(random.random()) time.sleep(0.8) if count % 50 == 0: if count == 50: self.write_header(weather_passed_file, passed_weather) else: self.write_row(weather_passed_file, passed_weather) passed_weather = list() if passed_weather: if count