CCF CAT- 全国算法精英大赛(2024第二场)往届真题练习 3 | 珂学家
前言
这是2024年第一场CCF初赛的题, 其实整场比赛,感觉不是特别难,就是码量大,偏模拟和数学。
对于A题,摩斯密码,很容易抄错,我一直在想有什么好办法可以规避它,是真的苦涩。
真题
摩斯密码
思路: 模拟题
真的太容易错了
from collections import defaultdict mp = defaultdict(str) mp['.-'] = 'A' mp['-...'] = 'B' mp['-.-.'] = 'C' mp['-..'] = 'D' mp['.'] = 'E' mp['..-.'] = 'F' mp['--.'] = 'G' mp['....'] = 'H' mp['..'] = 'I' mp['.---'] = 'J' mp['-.-'] = 'K' mp['.-..'] = 'L' mp['--'] = 'M' mp['-.'] = 'N' mp['---'] = 'O' mp['.--.'] = 'P' mp['--.-'] = 'Q' mp['.-.'] = 'R' mp['...'] = 'S' mp['-'] = 'T' mp['..-'] = 'U' mp['...-'] = 'V' mp['.--'] = 'W' mp['-..-'] = 'X' mp['-.--'] = 'Y' mp['--..'] = 'Z' mp['.----'] = '1' mp['..---'] = '2' mp['...--'] = '3' mp['....-'] = '4' mp['.....'] = '5' mp['-....'] = '6' mp['--...'] = '7' mp['---..'] = '8' mp['----.'] = '9' mp['-----'] = '0' mp['..--..'] = '?' mp['-..-.'] = '/' mp['-.--.-'] = '()' mp['-....-'] = '-' mp['.-.-.-'] = '.' arr = input().split('.') res = [] for s in arr: s = s.replace('1', '-') s = s.replace('0', '.') #print (mp[s]) res.append(mp[s]) print(''.join(res))
光线折射
光线映射,引入方向,然后模拟之。
我在想,是不是可以用初中物理那种做法,然后映入坐标映射转换。
w, h = list(map(int, input().split())) dirs = [(1, 1), (-1, 1), (-1, -1), (1, -1)] x, y = 0, 0 d = 0 for _ in range(3): if d == 0: dy, dx = h - y, w - x if dy == dx: y, x = h, w d = 2 elif dy > dx: y, x = y + (w - x), w d = 1 else: y, x = h, x + (h - y) d = 3 elif d == 1: dy, dx = abs(y - h), abs(x) if dy == dx: y, x = h, 0 d = 3 elif dy > dx: y, x = y + x, 0 d = 0 else: y, x = h, x - dy d = 2 elif d == 2: dy, dx = y, x if dy == dx: y, x = 0, 0 d = 0 elif dy > dx: y, x = y - dx, 0 d = 3 else: y, x = 0, x - dy d = 1 elif d == 3: dy, dx = y, w - x if dy == dx: y, x = 0, w d = 1 elif dy > dx: y, x = y - dx, w d = 2 else: y, x = 0, x + dy d = 0 print (x, y)
多项式还原
思路: n+1进制
诈骗题,如果能提取到关键的信息,其实就能快速秒了这题。
这题核心就是 n+1 进制构造
n, m = list(map(int, input().split())) res = [] i = 0 while m > 0: r = m % (n + 1) if r > 0: res.append((r, i)) i += 1 m = m // (n + 1) rs = [] for (k, v) in reversed(res): s = "" if k > 1: s += str(k) if v > 1: s += "x^" + str(v) elif v == 1: s += "x" else: if v > 1: s += "x^" + str(v) elif v == 1: s += "x" else: s += str(1) rs.append(s) print('+'.join(rs))
开心消消乐
经典的回溯问题,很游戏向的一道题
其实蛮折磨人的一道题,即考察dfs又考察bfs。
n, m = list(map(int, input().split())) grid = [] for _ in range(n): row = list(map(int, input().split())) grid.append(row) from collections import deque def bfs(chess, r, c, vis): res = [] h, w = len(chess), len(chess[0]) deq = deque() deq.append((r, c)) vis[r][c] = True res.append((r, c)) while len(deq) > 0: y, x = deq.popleft() for (dy, dx) in [(-1, 0), (1, 0), (0, -1), (0, 1)]: ty, tx = y + dy, x + dx if 0 = 0: while ty2 >= 0 and nchess[ty2][tx] == 0: ty2 -= 1 if ty2等式
思路: 质数筛 + 分子分解
偏数论的一道题
要做好优化,不然容易TLE
大概是预处理筛表 O ( n ) O(n) O(n)+ m n , m 为 n 以内的质数个数 m \sqrt {n}, m为n以内的质数个数 mn ,m为n以内的质数个数
import java.io.BufferedInputStream; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(new BufferedInputStream(System.in)); int n = sc.nextInt(); boolean[] vis = new boolean[n + 1]; Arrays.fill(vis, true); vis[0] = vis[1] = false; List primes = new ArrayList(); List primes2 = new ArrayList(); for (int i = 2; i if (vis[i]) { primes.add(i); if (i n / i) continue; primes2.add(i); for (int j = i * i; j vis[j] = false; } } } long res = 0; for (int v: primes) { if (n if (cn写在最后