MATLAB构建神经网络识别Mnist手写数字数据集(附代码)
目录
Mnist数据集介绍
构建多层感知机模型
代码:
模型结构:
运行结果:
构建卷积神经网络:
代码:
模型结构:
运行结果:
希望能够对你有所帮助!如有错误之处,敬请指正!
Mnist数据集介绍
Mnist数据集中包含60000张共10类手写数字的图片,每张图片的大小为28*28。部分手写数字图片如下所示:
选用其中50000张图片作为训练集,10000张图片作为测试集。
数据集链接:https://pan.quark.cn/s/03a502977f21
构建多层感知机模型
代码:
clear
clc
%导入数据集
matlabroot = './mnist_train_jpg_60000';
digitDatasetPath = fullfile(matlabroot);
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
%分割数据集
numTrainFiles = 5000;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
%创建模型
layers = [
imageInputLayer([28 28 1],"Name","imageinput")
fullyConnectedLayer(128,'Name',"fc")
batchNormalizationLayer("Name","batchnorm")
reluLayer("Name","relu")
fullyConnectedLayer(64,'Name',"fc_1")
batchNormalizationLayer("Name","batchnorm_1")
reluLayer("Name","relu_1")
fullyConnectedLayer(32,'Name',"fc_2")
batchNormalizationLayer("Name","batchnorm_2")
reluLayer("Name","relu_2")
fullyConnectedLayer(10,"Name","fc_3")
softmaxLayer("Name","softmax")
classificationLayer("Name","classoutput")];
%训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
%进行训练,并输出最终结果
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
disp(accuracy);
模型结构:
生成的模型输入为28*28*1大小的图片,有十个输出(与十种数字类型相对应)。模型包含输入层(imageInputLayer)、全连接层(fullyConnectedLayer)、批量归一化层(batchNormalizationLayer )、激活函数(reluLayer),softmaxLayer层及分类层(classificationLayer)。各层的详细信息与连接顺序图如下所示:
运行结果:
构建卷积神经网络:
代码:
clear
clc
matlabroot = './mnist_train_jpg_60000';
digitDatasetPath = fullfile(matlabroot);
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
numTrainFiles = 5000;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
imageInputLayer([28 28 1],"Name","imageinput")
convolution2dLayer([3 3],8,"Name","conv","Padding","same")
batchNormalizationLayer("Name","batchnorm")
reluLayer("Name","relu")
maxPooling2dLayer([5 5],"Name","maxpool","Padding","same")
convolution2dLayer([3 3],16,"Name","conv_1","Padding","same")
batchNormalizationLayer("Name","batchnorm_1")
reluLayer("Name","relu_1")
fullyConnectedLayer(10,"Name","fc_3")
softmaxLayer("Name","softmax")
classificationLayer("Name","classoutput")];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
disp(accuracy);
模型结构:
运行结果:
希望能够对你有所帮助!如有错误之处,敬请指正!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!







