MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

2024-06-09 1086阅读

目录

Mnist数据集介绍

构建多层感知机模型

代码:

模型结构:

运行结果:

构建卷积神经网络:

代码:

模型结构:

运行结果:

希望能够对你有所帮助!如有错误之处,敬请指正!


Mnist数据集介绍

Mnist数据集中包含60000张共10类手写数字的图片,每张图片的大小为28*28。部分手写数字图片如下所示:

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

选用其中50000张图片作为训练集,10000张图片作为测试集。

数据集链接:https://pan.quark.cn/s/03a502977f21

构建多层感知机模型

代码:

clear
clc
%导入数据集
matlabroot = './mnist_train_jpg_60000';
digitDatasetPath = fullfile(matlabroot);
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
%分割数据集
numTrainFiles = 5000;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
%创建模型
layers = [
    imageInputLayer([28 28 1],"Name","imageinput")
    fullyConnectedLayer(128,'Name',"fc")
    batchNormalizationLayer("Name","batchnorm")
    reluLayer("Name","relu")
    fullyConnectedLayer(64,'Name',"fc_1")
    batchNormalizationLayer("Name","batchnorm_1")
    reluLayer("Name","relu_1")
    fullyConnectedLayer(32,'Name',"fc_2")
    batchNormalizationLayer("Name","batchnorm_2")
    reluLayer("Name","relu_2")
    fullyConnectedLayer(10,"Name","fc_3")
    softmaxLayer("Name","softmax")
    classificationLayer("Name","classoutput")];
%训练参数
  options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress'); 
%进行训练,并输出最终结果
   net = trainNetwork(imdsTrain,layers,options); 
   YPred = classify(net,imdsValidation);
   YValidation = imdsValidation.Labels;
   accuracy = sum(YPred == YValidation)/numel(YValidation);
   disp(accuracy);

模型结构:

生成的模型输入为28*28*1大小的图片,有十个输出(与十种数字类型相对应)。模型包含输入层(imageInputLayer)、全连接层(fullyConnectedLayer)、批量归一化层(batchNormalizationLayer )、激活函数(reluLayer),softmaxLayer层及分类层(classificationLayer)。各层的详细信息与连接顺序图如下所示:

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

运行结果:

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

构建卷积神经网络:

代码:

clear
clc
matlabroot = './mnist_train_jpg_60000';
digitDatasetPath = fullfile(matlabroot);
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
numTrainFiles = 5000;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
    imageInputLayer([28 28 1],"Name","imageinput")
    convolution2dLayer([3 3],8,"Name","conv","Padding","same")
    batchNormalizationLayer("Name","batchnorm")
    reluLayer("Name","relu")
    maxPooling2dLayer([5 5],"Name","maxpool","Padding","same")
    convolution2dLayer([3 3],16,"Name","conv_1","Padding","same")
    batchNormalizationLayer("Name","batchnorm_1")
    reluLayer("Name","relu_1")
    fullyConnectedLayer(10,"Name","fc_3")
    softmaxLayer("Name","softmax")
    classificationLayer("Name","classoutput")];
  options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress'); 
   net = trainNetwork(imdsTrain,layers,options); 
   YPred = classify(net,imdsValidation);
   YValidation = imdsValidation.Labels;
   accuracy = sum(YPred == YValidation)/numel(YValidation);
   disp(accuracy);

模型结构:

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

运行结果:

MATLAB构建神经网络识别Mnist手写数字数据集(附代码)

希望能够对你有所帮助!如有错误之处,敬请指正!

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]