stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

06-01 1093阅读

1、JGB-520编码器减速直流电机

                                   stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

编码器

这是我用的电机,红色框框中的就是编码器。

编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

这是官方给出的,但我们只需要知道这个编码器可以通过电机的转动产生一定的脉冲,从而通过脉冲测出电机的转速和转动方向。后面我们会介绍这个。

JGB-520电机

stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

这种电机一般有6个引脚,有的引脚会与图中顺序不同(我的就是┭┮﹏┭┮)但只要连线正确就行。

这么大一个电机,我们要怎么让它动起来呢?没错,我们肯定需要一个驱动模块——tb6612

2、tb6612电机驱动模块

就是长这个样子:

                                       stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

这是它的引脚:

                            stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

3、电机的驱动

tb6612和电机的连接

TB6612C8T6
STBY高电平(+3.3V)
AIN1A电机输入端1(接板子)
AIN2A电机输入端2(接板子)
PWMAA电机控制信号输入端(PWM输入)
AO1A电机电源M+
AO2A电机电源M-
VM12V
VCC3.3V
GND和单片机共地

这是一个电机的引脚连接,另一个电机与此类似。如果只用于电机驱动而不用测速的话,只用接电机的M+和M-即可。

当AIN或BIN产生电势差,电机就会转动。

stm32平衡小车--(1)JGB-520减速电机+tb6612(附测试代码)

4、转速的测量

如果我们要让我们的平衡车真的实现平衡,就肯定需要使用PWM驱动电机,然后再使用编码器测量速度,再使用PID算法进行闭环控制。

原理:

接收编码器的A、B相产生的正交信号,根据编码器产生的正交信号脉冲,自动控制CNT自增或自减,根据计数方向和编码器的信号关系来指示编码器的位置、旋转方向和旋转速度,利用脉冲值来计算电机的转动位移

大概就是编码器上会有两个用来产生脉冲的东西,电机每转动一圈,他们会产生相差九十度的相同数量的脉冲,然后会有一个计数器去捕获脉冲的上升沿和下降沿,然后每隔一段时间去读取计数器的值(转动的圈数=计数器的数值/一圈产生的脉冲数),这样就能算出这一段时间转了多少圈,从而算出转速。

定时器的编码器接口模式

可以用来捕获上升沿和下降沿并计数。(Stm32中的定时器只有TIM1-5和TIM8才有编码器接口功能,而且只有CH1通道和CH2通道有用)。

4倍频计数:

采用的是编码器模式3,在TI1和TI2边沿都计数,也就是在一个周期内对A相和B相的上升沿下降沿都计数,一个周期内计4次,所以采用这种模式后,相应的计数值(CNT)就会变成4倍。

线数:

电机转动一圈产生的脉冲数就是线数。比如我的电机线束是30,那么我的电机转一圈就会产生30个脉冲。

5、相关代码的配置

电机的驱动代码如下:

这个没有什么好讲的,大家应该都能看懂。

//moto1,moto2  左轮PWM、右轮PWM
void Set_Pwm(int moto1,int moto2)
{
	if(moto1 CNT;  TIM3 -> CNT=0;break;	
		 default: Encoder_TIM=1;
	 }
		return Encoder_TIM;
}

PWM的配置

Motor_PWM_Init(7199,0);//不分频,初始化PWM 10KHZ,驱动电机

编码器模式的配置

预分频(psc)一般就为‘0’就好;

重装载值(arr)我这里配置的重装载值为65535,是最大值。这样定时器不会溢出,方便计算。也可以使用别的重装载值:

比如我的电机线数为30,即一圈产生30个脉冲,那么我如果使用编码器模式3的4倍频计数,那么转一圈会计数器值为30*4,如果我设置重装载值为120,那是不是电机每转一圈定时器就会溢出一次,我们再在定时器的溢出中断中加上一个计数器cnt,每次进中断,cnt的值就++,那在采样的时候计数器的值就为:cnt*重装载值+计数器的值

#define ENCODER_TIM_PERIOD (u16)(65535)   //103的定时器是16位 2的16次方最大是65536
 
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
  TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  

6、硬件连接

电机A

M+——AO1

M- ——AO2

A   ——PA6

B   ——PA7

VCC——3.3V

GND——GND

电机B

M+——BO1

M- ——BO2

A   ——PA0

B   ——PA1

VCC——3.3V

GND——GND

tb6612

VM——12V

VCC——3.3V

GND——GND

PWMA——PA8

AIN2——PB15

AIN1——PB14

STBY——3.3V

BIN1——PB13

BIN2——PB12

PWMB——PA11

7、完整代码

main.c

#include "stdio.h"
#include "led.h"
#include "delay.h"
#include "sys.h"
#include "usart.h"	
#include "motor_pwm.h"
#include "encoder.h"
 int main(void)
 {	
//	u16 led0pwmval=0;    
//	u8 dir=1;	
    uart_init(9600);	     //串口1初始化
	delay_init();	    	 //延时函数初始化	  
	LED_Init();		  	//初始化与LED连接的硬件接口
    NVIC_Configuration();	//中断优先级
    Motor_Init();       //
	Motor_PWM_Init(7199,0);//不分频,初始化PWM 10KHZ,驱动电机
   	Encoder_Init_TIM2();//TIM2初始化为编码器接口模式
    Encoder_Init_TIM3();//TIM3初始化为编码器接口模式
     
    while(1)
	{ 
//		if(dir)led0pwmval++;
//		else led0pwmval--;	 
// 		if(led0pwmval>300)dir=0;
//		if(led0pwmval==0)dir=1;
//		TIM_SetCompare1(TIM1,led0pwmval);
        Set_Pwm(6000,7000);
        printf("%d\t",Read_Encoder(2));
        printf("%d",Read_Encoder(3));
        printf("\r\n");
        delay_ms(1000);
        Set_Pwm(-5000,-4000);
        printf("%d\t",Read_Encoder(2));
        printf("%d",Read_Encoder(3));
        printf("\r\n");
        delay_ms(1000);
        
	} 
}

encoder.c

#include "encoder.h"
void Encoder_Init_TIM2(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  
  TIM_ICInitTypeDef TIM_ICInitStructure;  
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//使能定时器4的时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟
	
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;	//端口配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);					      //根据设定参数初始化GPIOB
  
  TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
  TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  
  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
  TIM_EncoderInterfaceConfig(TIM2, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3
  TIM_ICStructInit(&TIM_ICInitStructure);
  TIM_ICInitStructure.TIM_ICFilter = 10;
  TIM_ICInit(TIM2, &TIM_ICInitStructure);
  TIM_ClearFlag(TIM2, TIM_FLAG_Update);//清除TIM的更新标志位
  TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
  //Reset counter
  TIM_SetCounter(TIM2,0);
  TIM_Cmd(TIM2, ENABLE); 
}
/**************************************************************************
函数功能:把TIM3初始化为编码器接口模式
入口参数:无
返回  值:无
**************************************************************************/
void Encoder_Init_TIM3(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  
  TIM_ICInitTypeDef TIM_ICInitStructure;  
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//使能定时器4的时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟
	
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;	//端口配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);					      //根据设定参数初始化GPIOB
  
  TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
  TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  
  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
  TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3
  TIM_ICStructInit(&TIM_ICInitStructure);
  TIM_ICInitStructure.TIM_ICFilter = 10;
  TIM_ICInit(TIM3, &TIM_ICInitStructure);
  TIM_ClearFlag(TIM3, TIM_FLAG_Update);//清除TIM的更新标志位
  TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);
  //Reset counter
  TIM_SetCounter(TIM3,0);
  TIM_Cmd(TIM3, ENABLE); 
}
/**************************************************************************
函数功能:单位时间读取编码器计数
入口参数:定时器
返回  值:速度值
**************************************************************************/
int Read_Encoder(u8 TIMX)
{
    int Encoder_TIM;    
   switch(TIMX)
	 {
	   case 2:  Encoder_TIM= (short)TIM2 -> CNT;  TIM2 -> CNT=0;break;
		 case 3:  Encoder_TIM= (short)TIM3 -> CNT;  TIM3 -> CNT=0;break;	
		 default: Encoder_TIM=1;
	 }
		return Encoder_TIM;
}

encoder.h

#ifndef __ENCODER_H
#define __ENCODER_H
#include 	 
#define ENCODER_TIM_PERIOD (u16)(65535)   //103的定时器是16位 2的16次方最大是65536
void Encoder_Init_TIM2(void);
void Encoder_Init_TIM3(void);
int Read_Encoder(u8 TIMX);
#endif

motor_pwm.c

#include "motor_pwm.h"
#include "led.h"
//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
void Motor_Init(void)	//IN引脚初始化
{
    GPIO_InitTypeDef GPIO_InitStructure;
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); //使能PB端口时钟
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;	//端口配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;      //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;     //50MHZ
    GPIO_Init(GPIOB, &GPIO_InitStructure);					      //根据设定参数初始化GPIOB 
	AIN1=0,AIN2=0;
	BIN1=0,BIN1=0;
}
void Motor_PWM_Init(u16 arr,u16 psc)	//PWM引脚初始化
{
    GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);// 
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  //使能GPIO外设时钟使能
    //设置该引脚为复用输出功能,输出TIM1 CH1 CH4的PWM脉冲波形
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_11; //TIM_CH1 //TIM_CH4
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	 
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  不分频
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
 
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;                            //设置待装入捕获比较寄存器的脉冲值
	TIM_OCInitStructure.TIM_Pulse = arr >> 1;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性:TIM输出比较极性高
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
	TIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
    TIM_CtrlPWMOutputs(TIM1,ENABLE);	//MOE 主输出使能	
	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH1预装载使能	 
	TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH4预装载使能	 
	
	TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
	
	TIM_Cmd(TIM1, ENABLE);  //使能TIM1
}
//moto1,moto2  左轮PWM、右轮PWM
void Set_Pwm(int moto1,int moto2)
{
	if(moto1
VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]