在 ResNet 中实现多尺度的特征融合(内含代码,用于图像分类)
在 ResNet 中实现多尺度的特征融合,类似于特征金字塔网络(Feature Pyramid Network,FPN)的思想。下面是一个简单的示例,演示如何在 ResNet 中添加多尺度的特征融合:
(图片来源网络,侵删)
import torch import torch.nn as nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = nn.ReLU()(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out class ResNetWithFeaturePyramid(nn.Module): def __init__(self, block, num_blocks, num_classes=1000): super(ResNetWithFeaturePyramid, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) # 添加额外的卷积层用于构建特征金字塔 self.extra_conv = nn.Conv2d(2048, 256, kernel_size=1, stride=1, bias=False) self.pyramid_conv1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, bias=False) self.pyramid_conv2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, bias=False) self.pyramid_conv3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, bias=False) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) # 获取不同层次的特征 c4 = out c3 = self.layer3(out) c2 = self.layer2(c3) c1 = self.layer1(c2) # 构建特征金字塔 p4 = self.pyramid_conv1(c4) p3 = self.pyramid_conv2(c3) p2 = self.pyramid_conv3(c2) # 从高层到低层进行上采样和融合 p3 = p3 + nn.functional.interpolate(p4, scale_factor=2, mode='nearest') p2 = p2 + nn.functional.interpolate(p3, scale_factor=2, mode='nearest') # 降采样 p2 = nn.functional.interpolate(p2, scale_factor=0.5, mode='nearest') # 使用额外的卷积层 p1 = self.extra_conv(c1) # 融合所有尺度的特征 fused_feature = p1 + p2 + p3 # 全局平均池化和全连接层 out = self.avgpool(fused_feature) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet50WithFeaturePyramid(): return ResNetWithFeaturePyramid(Bottleneck, [3, 4, 6, 3]) # 创建 ResNet-50 模型 resnet50_with_fpn = ResNet50WithFeaturePyramid() # 打印模型结构 print(resnet50_with_fpn)
这个代码示例中,我添加了额外的卷积层和三个特征金字塔层,以便从不同的卷积层获得特征并进行融合。大家可以根据任务需求进行更改和优化。特征金字塔的思想能够提供更好的多尺度信息,有助于提高模型对不同目标大小的适应性。
文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。