蓝桥杯【第15届省赛】Python B组
这题目难度对比历届是相当炸裂的简单了……题目也少了两道编程,应该是遇到创作瓶颈了
A:穿越时空之门
【问题描述】
随着 2024 年的钟声回荡,传说中的时空之门再次敞开。这扇门是一条神秘的通道,它连接着二进制和四进制两个不同的数码领域,等待着勇者们的探索。
在二进制的领域里,勇者的力量被转换成了力量数值的二进制表示中各数位之和。
在四进制的领域里,力量的转换规则相似,变成了力量数值的四进制表示中各数位之和。
穿越这扇时空之门的条件是严苛的:当且仅当勇者在二进制领域的力量等同于四进制领域的力量时,他才能够成功地穿越。
国王选定了小蓝作为领路人,带领着力量值从 1 到 2024 的勇者们踏上了这段探索未知的旅程。作为小蓝的助手,你的任务是帮助小蓝计算出,在这 2024 位勇者中,有多少人符合穿越时空之门的条件。
【解析及代码】
省流:数字转成二进制、四进制,数位之和相等的数
答案:63
cnt = 0 for i in range(1, 2025): # 二进制 bins = bin(i)[2:].count("1") # 四进制 four = 0 while i: four += i % 4 i //= 4 # 累加 cnt += bins == four print(cnt)
B:数字串个数
【问题描述】
小蓝想要构造出一个长度为 10000 的数字字符串,有以下要求:
1) 小蓝不喜欢数字 0 ,所以数字字符串中不可以出现 0 ;
2) 小蓝喜欢数字 3 和 7 ,所以数字字符串中必须要有 3 和 7 这两个数字。
请问满足题意的数字字符串有多少个?这个数字会很大,你只需要输出其 对 取余后的结果。
【解析及代码】
容斥原理秒杀
答案:157509472
mod = int(1e9 + 7) n = 10000 cnt = pow(9, n, mod) # 去除 no(3) + no(7) 的情况 cnt -= 2 * pow(8, n, mod) # 补上 no(3 and 7) 的情况 cnt += pow(7, n, mod) print(cnt % mod)
C:连连看
【问题描述】
小蓝正在和朋友们玩一种新的连连看游戏。在一个 n × m 的矩形网格中, 每个格子中都有一个整数,第 i 行第 j 列上的整数为 。玩家需要在这个网 格中寻找一对格子 使得这两个格子中的整数 和 相等,且 它们的位置满足 。请问在这个 n × m 的矩形网格中有多少对 这样的格子满足条件。
【输入格式】
输入的第一行包含两个正整数 n, m ,用一个空格分隔。
接下来 n 行,第 i 行包含 m 个正整数 ,相邻整数之间使 用一个空格分隔。
【输出格式】
输出一行包含一个整数表示答案。
【样例】
输入 | 输出 | 说明 |
3 2 1 2 2 3 3 2 | 6 | 一共有以下 6 对格子: (1, 2) − (2, 1) ,(2, 2) − (3, 1) , (2, 1) − (3, 2) ,(2, 1) − (1, 2) , (3, 1) − (2, 2) ,(3, 2) − (2, 1) 。 |
【评测用例规模与约定】
20% | |
100% |
【解析及代码】
根据题意可知,(a, b) - (c, d) 中的两个元素位于同一斜线上
(1, 2) - (2, 1) 和 (2, 1) - (1, 2) 算不同的两对,优化一下比较流程计算结果即可
n, m = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(n)] # A[a][b] = A[c][d], 处于同一斜线上 cnt = 0 for i in range(n): for j in range(m): # 只跟当前行以下的行比较 # 向左下角 for p in range(1, min(n - i, j + 1)): cnt += A[i][j] == A[i + p][j - p] # 向右下角 for p in range(1, min(n - i, m - j)): cnt += A[i][j] == A[i + p][j + p] print(cnt * 2)
D:神奇闹钟
【问题描述】
小蓝发现了一个神奇的闹钟,从纪元时间(1970 年 1 月 1 日 00:00:00 )开 始,每经过 x 分钟,这个闹钟便会触发一次闹铃(纪元时间也会响铃)。这引起 了小蓝的兴趣,他想要好好研究下这个闹钟。
对于给出的任意一个格式为 yyyy-MM-dd HH:mm:ss 的时间,小蓝想要 知道在这个时间点之前(包含这个时间点)的最近的一次闹铃时间是哪个时间?
注意,你不必考虑时区问题。
【输入格式】
输入的第一行包含一个整数 T,表示每次输入包含 T 组数据。
接下来依次描述 T 组数据。
每组数据一行,包含一个时间(格式为 yyyy-MM-dd HH:mm:ss)和一 个整数 x ,其中 x 表示闹铃时间间隔(单位为分钟)。
【输出格式】
输出 T 行,每行包含一个时间(格式为 yyyy-MM-dd HH:mm:ss),依次表示每组数据的答案。
【样例】
输入 | 输出 |
2 2016-09-07 18:24:33 10 2037-01-05 01:40:43 30 | 2016-09-07 18:20:00 2037-01-05 01:30:00 |
【评测用例规模与约定】
100% |
【解析及代码】
What can I say?
import time fmt = "%Y-%m-%d %H:%M:%S" for _ in range(int(input())): datetime, x = input().rsplit(maxsplit=1) x = int(x) * 60 t = round(time.mktime(time.strptime(datetime, fmt))) print(time.strftime(fmt, time.localtime(t - t % x)))
E:蓝桥村的真相
【问题描述】
在风景如画的蓝桥村,n 名村民围坐在一张古老的圆桌旁,参与一场思想 的较量。这些村民,每一位都有着鲜明的身份:要么是誉满乡野的诚实者,要 么是无可救药的说谎者。
当会议的钟声敲响,一场关于真理与谬误的辩论随之展开。每位村民轮流 发言,编号为 i 的村民提出了这样的断言:坐在他之后的两位村民——也就是 编号 i + 1 和 i + 2(注意,编号是环形的,所以如果 i 是最后一个,则 i + 1 是 第一个,以此类推)之中,一个说的是真话,而另一个说的是假话。
在所有摇曳不定的陈述中,有多少真言隐藏在谎言的面纱之后?
请你探索每一种可能的真假排列组合,并计算在所有可能的真假组合中, 说谎者的总数。
【输入格式】
输入的第一行包含一个整数 T,表示每次输入包含 T 组数据。
接下来依次描述 T 组数据。
每个数据一行包含一个整数 n,表示村落的人数。
【输出格式】
输出 T 行,每行包含一个整数,依次表示每组数据的答案。
【样例】
输入 | 输出 | 说明 |
2 3 3 | 6 6 | 可能的组合有 「假,假,假」「真,真,假」 「真,假,真」「假, 真,真」 说谎者的总数为 3 + 1 + 1 + 1 = 6。 |
【评测用例规模与约定】
10% | |
40% | |
100% |
【解析及代码】
1 表谎言,0 表真言,每 3 个人可能的组合有:010, 001, 100, 111
前三种情况:100 是一个循环 (第三人是前两人的“同或”),如果 n 能被 3 整除,这三种情况就贡献了 n 个说谎的
第四种情况:全都是 111,贡献了 n 个说谎的
for _ in range(int(input())): n = int(input()) print(n * (1 + (n % 3 == 0)))
F:魔法巡游
【问题描述】
在蓝桥王国中,两位魔法使者,小蓝与小桥,肩负着维护时空秩序的使命。 他们每人分别持有 N 个符文石,这些石头被赋予了强大的力量,每一块上都刻 有一个介于 1 到 之间的数字符号。小蓝的符文石集合标记为 , 小桥的则为 。
两位魔法使者的任务是通过使用符文石,在各个时空结点间巡游。每次巡游遵循这样一条法则:当小蓝使用了符文石 到达新的结点后,小桥必须选用 一个序号更大的符文石(即某个 满足 j > i)前往下一个结点。同理,小桥抵 达之后,小蓝需要选择一个序号 k > j 的符文石 继续他们的巡游。
为了成功地穿梭时空,两个连续使用的符文石上的数字符号必须有共鸣, 这种共鸣只有当数字符号中至少包含一个特定的元素——星火(数字 0)、水波 (数字 2)或者风语(数字 4)时,才会发生。例如,符号序列 126, 552, 24, 4 中 的每对连续符文都包含了至少一个共鸣元素,则它们是一系列成功的巡游;而 如果是 15, 51, 5,则不成立,因为它们之间的共鸣元素不包含星火、水波或风语 中的任意一个。
小蓝总是先启程,使用他的符文石开启巡游。
你的任务是计算这对魔法使者能够执行的最长时空巡游序列的长度。这样 的序列形式为 ,其中序列索引满足 ,并且序列中每一对相邻的符文石都至少包含一个共鸣元素。
【输入格式】
输入的第一行包含一个整数 N,表示每位魔法使者持有的符文石数量。
第二行包含 N 个整数 ,相邻整数之间使用一个空格分隔,表示小蓝的符文石上刻有的数字符号。
第三行包含 N 个整数 ,相邻整数之间使用一个空格分隔,表示小桥的符文石上刻有的数字符号。
【输出格式】
输出一行包含一个整数,表示小蓝和小桥在遵守所有规则的情况下,最多能进行多少次时空巡游。
【样例】
输入 | 输出 | 说明 |
5 126 393 581 42 44 204 990 240 46 52 | 4 | 小蓝和小桥可以选择以下符文石序列进行巡游: |
【评测用例规模与约定】
30% | |
100% |
【解析及代码】
编写类 Element,重写 __init__ 方法以搜集符文石的特定元素,存储到 set 中
存储非空的 Element 的索引,结合 bisect 的二分查找加速枚举,直接动态规划
import bisect class Element(set): base = {"0", "2", "4"} def __init__(self, s): super().__init__(set(s) & self.base) n = int(input()) e_lan = list(map(Element, input().split())) e_qiao = list(map(Element, input().split())) # 编制非空元素的索引 i_lan = [i for i in range(n) if e_lan[i]] i_qiao = [i for i in range(n) if e_qiao[i]] if not (i_lan and i_qiao): print(1) # 两者都非空 else: # 小蓝先出发 dp = [[0, 0] for _ in range(n)] for i in i_lan: dp[i][0] = 1 res = 0 for i in sorted(set(i_lan + i_qiao)): j_lan = bisect.bisect_left(i_lan, i) j_qiao = bisect.bisect_left(i_qiao, i) # 小蓝出发 if i_lan[j_lan] == i: for src in i_qiao[:j_qiao]: if e_qiao[src] & e_lan[i]: dp[i][0] = max(dp[i][0], dp[src][1] + 1) # 小桥出发 if i_qiao[j_qiao] == i: for src in i_lan[:j_lan]: if e_lan[src] & e_qiao[i]: dp[i][1] = max(dp[i][1], dp[src][0] + 1) res = max(res, max(dp[i])) print(res)
G:缴纳过路费
【问题描述】
在繁华的商业王国中,N 座城市被 M 条商路巧妙地连接在一起,形成了一 个错综复杂的无向图网络。每条商路是双向通行的,并且任意两座城市之间最 多只有一条直接的商路。每条商路都有它的规则,其中最引人注目的就是穿过商路,需要缴纳过路费。因此,商人们在选择商路时必须格外认真。
有一位名叫小蓝的商人,他对于商路的花费有着自己独到的见解。在小蓝 眼中,一条路线包含一条或多条商路,但路线的成本并不是沿途累积的过路费总和,而是这条路线上最贵的那一次收费。这个标准简单而直接,让他能迅速 评估出一条路线是否划算。
于是,他设立了一个目标,即找出所有城市对,这些城市之间的最低路线 成本介于他心中预设的两个数 L 和 R 之间。他相信,这样的路线既不会太廉 价,以至于路况糟糕;也不会过于昂贵,伤害他精打细算的荷包。
作为小蓝的助手,请你帮助小蓝统计出所有满足条件的城市对数量。
【输入格式】
输入的第一行包含四个整数 N, M, L, R,表示有 N 座城市和 M 条双向通行 的商路,以及小蓝心中预设的最高过路费的下限 L 和上限 R。
接下来 M 行,每行包含三个整数 u, v, w,表示城市 u 和城市 v 之间有一条 双向通行的商路,过路费为 w。保证每对城市之间最多只有一条直接的商路。
【输出格式】
输出一行包含一个整数,表示满足条件的城市对数量。
【样例】
输入 | 输出 | 说明 |
5 5 1 2 1 2 2 1 3 5 1 4 1 2 4 5 2 5 4 | 3 | 满足条件的城市对有 (1, 2),(1, 4),(2, 4) |
【评测用例规模与约定】
30% | |
100% |
【解析及代码】
注:经大佬提醒,发现该题做法错误,应该是 Kruskal + 并查集 (正确的做法有空再研究)。如果将题目条件中“过路费最贵的一次∈[L, R]”改为“过路费∈[L, R]”,则是以下做法
边权不在 [L, R] 范围内的边都可以忽略
对每个结点,使用列表 dset 记录所连接的、序号比其小的结点 (也就是并查集所说的“前驱”),从而使 dset 描述若干棵结点树
例如对于 dset = [0, 0, 1, 3, 2],结点 0,1,2,4 处于同一棵树内,结点 3 则独自构成一棵树。而结点 0,1,2,4 两两之间连通,所以这棵树贡献了 个城市对,而第二颗树无贡献
对 dset 中的结点扫描一次,即可找到每个结点所对应的“祖先结点”:
- dset[0] == 0:跳过
- dset[1] != 1:dset[1] = dset[dset[1]] = dset[0] = 0
- dset[2] != 2:dset[2] = dset[dset[2]] = dset[1] = 0
- dset[3] == 3:跳过
- dset[4] != 4:dset[4] = dset[dset[4]] = dset[2] = 0
从而使得 dset 转变为 [0, 0, 0, 3, 0],使用 Counter 统计每棵树的结点数量 (筛除只有 1 个结点的),根据结点数 v 累加 即可
from collections import Counter n, m, l, r = map(int, input().split()) class DisjointSet(list): def __init__(self): # s.j.: self[i] 1 的族群 return sum(v * (v + 1) // 2 for v in filter((1).__lt__, Counter(self).values())) dset = DisjointSet() for _ in range(m): u, v, w = map(int, input().split()) # 只存储符合条件的边 if l