【自然语言处理】Word2Vec 词向量模型详解 + Python代码实战
文章目录
- 一、词向量引入
- 二、词向量模型
- 三、训练数据构建
- 四、不同模型对比
- 4.1 CBOW
- 4.2 Skip-gram 模型
- 4.3 CBOW 和 Skip-gram 对比
- 五、词向量训练过程
- 5.1 初始化词向量矩阵
- 5.2 训练模型
- 六、Python 代码实战
- 6.1 Model
- 6.2 DataSet
- 6.3 Main
- 6.4 运行输出
一、词向量引入
先来考虑一个问题:如何能将文本向量化呢?听起来比较抽象,我们可以先从人的角度来思考。
如何用一个数值向量描述一个人呢?只用身高或者体重,还是综合其各项指标呢?当然是综合各项指标能更加准确的描述一个人啦,具体什么指标还得看你能收集到什么指标。比如除了常规的身高、体重外,我们还可以用人的性格,从内向到外向设置为从-1到+1,人的性格让“专家”去打分,从而获取人性格的数值化数据。
只要有了向量,就可以用不同方法(欧氏距离、曼哈顿距离、切比雪夫距离、余弦相似度等)来计算两个向量之间的相似度了!
通常来说,向量的维度越高,能提供的信息也就越多,从而计算结果的可靠性就更值得信赖
现在回到正题,如何描述词的特征?通常都是在词的层面上来构建特征。Word2Vec就是要把词转化为向量。
下图展示了一个50维的词向量:
假设现在已经拿到了一份训练好的词向量,其中每一个词都表示为50维的向量,如下图所示:
如果将它们在热度图中显示,结果如下:
在结果中可以发现,相似的词在特征表达中比较相似,也就是说明词的特征是有实际意义的!
二、词向量模型
在词向量模型中输入和输出是什么?中间这个黑盒又是什么?
如下图所示,在词向量模型中,输入可以是多个词。例如下面所示的,输入是 Thou 和 shalt,模型的任务是预测它们的下一个词是什么。
最后一层连接了 SoftMax,所以网络的输出是所有词可能是下一个词的概率。
那么有人就会问了,输入是文字,文字怎么输入到神经网络中啊 ?这个问题很好,我们通常会用一个 Embedding 层来解决这个问题。如下图所示,在神经网络初始化的时候,我们会随机初始化一个 N×K 的矩阵,其中 N 是 词典的大小,K 是词向量的维数(一个自行设定的超参数)。然后,我们会用一个 N×N 的矩阵和 N×K 的矩阵相乘,得到一个新的 N×K的矩阵向下进行前向传播。其中,N×N 的矩阵会在输入的文字的对应对角线上设置为1,其余位置均为0。N×K 的矩阵是随机初始化的,通过反向传播进行更新调整。
下面展示了一个例子(假设输入的两个词在词典中的位置是2和3处):
三、训练数据构建
问:我们的训练数据应该从哪找呢?
答:一切具有正常逻辑的语句都可以作为训练数据。如小说、论文等。
如果我们有一个句子,那么我们可以按照下面你的方式构建数据集,选出前三个词,用前两个作为词模型的输入,最后一个词作为词模型输出的目标,继而进行训练。如下图所示:
然后,我们还可以将”窗口“往右平移一个词,如下图所示,构造一个新的训练数据
当然,这个”窗口“的宽度也是可以自己设置的,在上例中,窗口宽度设置为 3,也可以设置为 4、5、6 等等
四、不同模型对比
4.1 CBOW
CBOW的全称是continuous bag of words(连续词袋模型)。其本质也是通过context word(背景词)来预测target word(目标词)。
CBOW之所以叫连续词袋模型,是因为在每个窗口内它也不考虑词序信息,因为它是直接把上下文的词向量相加了,自然就损失了词序信息。CBOW抛弃了词序信息,指的就是在每个窗口内部上下文直接相加而没有考虑词序。
用 CBOW 构造数据集的例子如下图所示:
4.2 Skip-gram 模型
Skip-gram 模型和 CBOW 相反,Skip-gram 模型的输入是一个词汇,输出则是该词汇的上下文。如下图所示:
下面举一个例子,设”窗口“宽度为5,每次用”窗口“的第三个也就是中的词汇作为输入,其余上下文作为输出,分别构建数据集,如下图所示:
然后用构建好的数据集丢给词模型进行训练,如下图所示:
如果一个语料库稍微大一点,可能的结果就太多了,最后一层 SoftMax 的计算就会很耗时,有什么办法来解决吗?
下面提出了一个初始解决方案:假设,传统模型中,我们输入 not ,希望输出是 thou,但是由于语料库庞大,最后一层 SoftMax 太过耗时,所以我们可以改为:将 not 和 thou 同时作为输入,做一个二分类问题,类别 1 表示 not 和 thou 是邻居,类别 0 表示它们不是邻居。
上面提到的解决方案出发点非常好,但是由于训练集本来就是用上下文构建出来的,所以训练集构建出来的标签全为 1 ,无法较好的进行训练,如下图所示:
改进方案:加入一些负样本(负采样模型),一般负采样个数为 5 个就好,负采样示意图如下图所示:
4.3 CBOW 和 Skip-gram 对比
五、词向量训练过程
5.1 初始化词向量矩阵
5.2 训练模型
通过神经网络反向传播来计算更新,此时不光更新权重参数矩阵W,也会更新输入数据
训练完成后,我们就得到了比较准确的 Word Embeddings,从而得到了每个词的向量表示!!!
六、Python 代码实战
完整代码和数据集:基于PyTorch实现的词向量模型
6.1 Model
from torch import nn class DNN(nn.Module): def __init__(self, vocabulary_size, embedding_dim): super(DNN, self).__init__() self.embedding = nn.Linear(vocabulary_size, embedding_dim, bias=False) print("embedding_size:", list(self.embedding.weight.size())) self.layers = nn.Sequential( nn.Linear(vocabulary_size * embedding_dim, embedding_dim // 2), nn.LeakyReLU(), nn.Linear(embedding_dim // 2, 4), nn.LeakyReLU(), nn.Linear(4, 1), ) # Mean squared error loss self.criterion = nn.MSELoss() # self.criterion = nn.CrossEntropyLoss() def forward(self, x): x = self.embedding(x) x = x.view(x.size()[0], -1) x = self.layers(x) x = x.squeeze(1) return x def cal_loss(self, pred, target): """ Calculate loss """ return self.criterion(pred, target)
6.2 DataSet
import random import numpy as np from torch.utils.data import Dataset class MyDataSet(Dataset): def __init__(self, features, labels): self.features = features self.labels = labels def __getitem__(self, index): return self.features[index], self.labels[index] def __len__(self): return len(self.features) def get_data_set(data_path, window_width, window_step, negative_sample_num): with open(data_path, 'r', encoding='utf-8') as file: document = file.read() document = document.replace(",", "").replace("?", "").replace(".", "").replace('"', '') data = document.split(" ") print(f"数据中共有 {len(data)} 个单词") # 构造词典 vocabulary = set() for word in data: vocabulary.add(word) vocabulary = list(vocabulary) print(f"词典大小为 {len(vocabulary)}") # index_dict index_dict = dict() for index, word in enumerate(vocabulary): index_dict[word] = index # 开始滑动窗口,构造数据 features = [] labels = [] neighbor_dict = dict() for start_index in range(0, len(data), window_step): if start_index + window_width - 1
6.3 Main
import random from math import sqrt import numpy as np import torch from torch.utils.data import DataLoader from Python.机器学习.唐宇迪机器学习.词向量.DataSet import get_data_set from Python.机器学习.唐宇迪机器学习.词向量.Model import DNN def same_seed(seed): """ Fixes random number generator seeds for reproducibility 固定时间种子。由于cuDNN会自动从几种算法中寻找最适合当前配置的算法,为了使选择的算法固定,所以固定时间种子 :param seed: 时间种子 :return: None """ torch.backends.cudnn.deterministic = True # 解决算法本身的不确定性,设置为True 保证每次结果是一致的 torch.backends.cudnn.benchmark = False # 解决了算法选择的不确定性,方便复现,提升训练速度 np.random.seed(seed) # 按顺序产生固定的数组,如果使用相同的seed,则生成的随机数相同, 注意每次生成都要调用一次 torch.manual_seed(seed) # 手动设置torch的随机种子,使每次运行的随机数都一致 random.seed(seed) if torch.cuda.is_available(): # 为GPU设置唯一的时间种子 torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def train(model, train_loader, config): # Setup optimizer optimizer = getattr(torch.optim, config['optimizer'])( model.parameters(), **config['optim_hyper_paras']) device = config['device'] epoch = 0 while epoch distance: min_distance = distance min_i = i return min_i if __name__ == '__main__': data_path = './data/data.txt' config = { 'seed': 3407, # Your seed number, you can pick your lucky number. :) 'device': 'cuda' if torch.cuda.is_available() else 'cpu', 'n_epochs': 20, # Number of epochs. 'batch_size': 64, 'optimizer': 'Adam', 'optim_hyper_paras': { # hyper-parameters for the optimizer (depends on which optimizer you are using) 'lr': 0.001, # learning rate of optimizer }, 'embedding_dim': 6, # 词向量长度 'window_width': 5, # 窗口的宽度 'window_step': 2, # 窗口滑动的步长 'negative_sample_num': 10 # 要增加的负样本个数 } same_seed(config['seed']) data_set, vocabulary, index_dict = get_data_set(data_path, config['window_width'], config['window_step'], config['negative_sample_num']) train_loader = DataLoader(data_set, config['batch_size'], shuffle=True, drop_last=False, pin_memory=True) model = DNN(len(vocabulary), config['embedding_dim']).to(config['device']) train(model, train_loader, config) # 训练完,看看embeddings,展示部分词的词向量,并找到离它最近的词的词向量 embeddings = torch.t(model.embedding.weight) for i in range(10): print('%-50s%s' % (f"{vocabulary[i]} 的词向量为 :", str(embeddings[i].tolist()))) min_i = find_min_distance_word_vector(i, embeddings[i].tolist(), embeddings, vocabulary) print('%-45s%s' % ( f"离 {vocabulary[i]} 最近的词为 {vocabulary[min_i]} , 它的词向量为 :", str(embeddings[min_i].tolist()))) print('-' * 200)
6.4 运行输出
数据中共有 1803 个单词 词典大小为 511 embedding_size: [6, 511] epoch: 0/20 , loss: 0.0752271132772429 epoch: 1/20 , loss: 0.01744390495137818 epoch: 2/20 , loss: 0.0030546926833554416 epoch: 3/20 , loss: 0.0025285633501449696 epoch: 4/20 , loss: 0.002311844104776371 epoch: 5/20 , loss: 0.002020565740071776 epoch: 6/20 , loss: 0.001762585903602405 epoch: 7/20 , loss: 0.0015661540336415719 epoch: 8/20 , loss: 0.0013828050599872846 epoch: 9/20 , loss: 0.0010562216170033104 epoch: 10/20 , loss: 0.0008050707044451867 epoch: 11/20 , loss: 0.0006666925565903575 epoch: 12/20 , loss: 0.0005228724374622592 epoch: 13/20 , loss: 0.00041554564311234953 epoch: 14/20 , loss: 0.0003863844721659884 epoch: 15/20 , loss: 0.00024095189464708056 epoch: 16/20 , loss: 0.0001828093964042254 epoch: 17/20 , loss: 0.0001404089290716863 epoch: 18/20 , loss: 0.00010190787191819701 epoch: 19/20 , loss: 6.971220871894714e-05 Finished training after 20 epochs well 的词向量为 : [0.2800050377845764, -0.28451332449913025, -0.288005530834198, -0.3119206130504608, 0.2786404490470886, 0.31298771500587463] 离 well 最近的词为 first , 它的词向量为 : [0.11318866163492203, -0.1251109391450882, -0.13063986599445343, -0.11296737194061279, 0.1378508061170578, 0.13971801102161407] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- submitted 的词向量为 : [0.15754808485507965, -0.12277694046497345, -0.14227379858493805, -0.14454570412635803, 0.05900704860687256, 0.09546193480491638] 离 submitted 最近的词为 benefit , 它的词向量为 : [0.13462799787521362, -0.10862613469362259, -0.10275529325008392, -0.07748148590326309, 0.10121206194162369, 0.10051087290048599] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- even 的词向量为 : [-0.11601416021585464, -0.10113148391246796, -0.1214226558804512, -0.10180512815713882, -0.09548257291316986, -0.11160479485988617] 离 even 最近的词为 working , 它的词向量为 : [-0.1340179741382599, -0.10384820401668549, -0.1085871234536171, -0.09771087765693665, -0.09202782064676285, -0.11302905529737473] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- thus 的词向量为 : [0.1400231420993805, 0.11062948405742645, -0.13136275112628937, -0.14278383553028107, 0.0380394384264946, 0.1342836171388626] 离 thus 最近的词为 problem , 它的词向量为 : [0.13799253106117249, 0.12232215702533722, -0.11594908684492111, -0.14511127769947052, 0.11674903333187103, 0.14989981055259705] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- so 的词向量为 : [-0.13579697906970978, -0.1544174700975418, -0.13814400136470795, 0.1473793238401413, -0.13407182693481445, -0.16138871014118195] 离 so 最近的词为 role , 它的词向量为 : [-0.13371147215366364, -0.1268460601568222, -0.12891902029514313, 0.10279709100723267, -0.11447536945343018, -0.14199912548065186] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- decisions 的词向量为 : [-0.11366508901119232, 0.16771574318408966, 0.1678972989320755, -0.1269330531358719, -0.05488301441073418, 0.03212495520710945] 离 decisions 最近的词为 graduation , 它的词向量为 : [-0.1385655254125595, 0.11743943393230438, 0.16122682392597198, -0.08773274719715118, -0.10684341937303543, -0.018613960593938828] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- retained 的词向量为 : [0.1318095624446869, 0.1072487011551857, -0.09701842069625854, 0.12827205657958984, -0.07958601415157318, 0.12242742627859116] 离 retained 最近的词为 but , 它的词向量为 : [0.12475789338350296, 0.10641714930534363, -0.10653595626354218, 0.10686526447534561, -0.11097636818885803, 0.12155742198228836] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- not 的词向量为 : [0.11732926964759827, -0.1214861199259758, -0.12549108266830444, -0.14001798629760742, -0.11948511749505997, 0.10462098568677902] 离 not 最近的词为 we , 它的词向量为 : [0.11353950947523117, -0.12036407738924026, -0.12329546362161636, -0.10175121575593948, -0.11156024783849716, 0.08613568544387817] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- agree 的词向量为 : [0.1323355734348297, 0.07596761733293533, -0.1199847161769867, -0.07760312408208847, 0.12063225358724594, -0.12207814306020737] 离 agree 最近的词为 attitudes , 它的词向量为 : [0.1297885924577713, 0.0682920590043068, -0.11543254554271698, -0.08852613717317581, 0.1026940643787384, -0.15329356491565704] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- our 的词向量为 : [-0.005921764764934778, 0.13929229974746704, -0.12112995237112045, 0.11011514812707901, 0.10238232463598251, 0.11239470541477203] 离 our 最近的词为 iron-faced , 它的词向量为 : [-0.11445378512144089, 0.12393463402986526, -0.12114288657903671, 0.11323738098144531, 0.1026541218161583, 0.11349711567163467] --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------