nn.Parameter()
温馨提示:这篇文章已超过381天没有更新,请注意相关的内容是否还可用!
nn.Parameter() 是 PyTorch 中的一个类,用于创建可训练的参数(权重和偏置),这些参数会在模型训练过程中自动更新。
(图片来源网络,侵删)
nn.Parameter() 具有以下特点:
- nn.Parameter() 继承自 torch.Tensor,因此它本质上也是一个张量(tensor),可以像普通张量一样进行各种张量操作,例如加法、乘法、索引等。
- nn.Parameter() 具有额外的属性 requires_grad,用于指定参数是否需要计算梯度。默认情况下,requires_grad 的值为 False,即参数不会计算梯度。当设置为 True 时,参数会在反向传播过程中计算梯度,并且可以通过优化器进行自动更新。
- nn.Parameter() 对象可以作为模型的成员变量,例如通过类的属性进行定义,这样在模型的前向传播和反向传播过程中可以自动识别并更新这些参数。
使用 nn.Parameter() 创建可训练参数的一般流程如下:
- 定义一个 nn.Parameter() 对象,可以通过 nn.Parameter(torch.randn(size)) 构造函数传入初始化的张量,其中 size 是参数的形状。
- 将定义的 nn.Parameter() 对象作为模型的成员变量,例如通过类的属性进行定义,这样在模型的前向传播和反向传播过程中可以自动识别并更新这些参数。
- 在优化器中指定需要优化的参数,例如使用 optim.SGD、optim.Adam 等优化器的 params 参数,传入模型的可训练参数列表,例如 model.parameters()。
总的来说,nn.Parameter() 可以方便地定义和管理模型的可训练参数,并且在模型训练过程中可以自动计算梯度并更新参数值,是构建神经网络模型时常用的工具。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
