leetcode刷题(9)二叉树(3)
各位朋友们,提前祝大家五一劳动节快乐啊!!!今天我为大家分享的是关于leetcode刷题二叉树相关的第三篇我文章,让我们一起来看看吧。
文章目录
- 1.二叉树的层序遍历
- 题目要求
- 做题思路
- 代码实现
- 2.从前序与中序遍历序列构造二叉树
- 题目要求
- 做题思路
- 代码实现
- 3.从中序与后序遍历序列构造二叉树
- 题目要求
- 做题思路
- 代码实现
1.二叉树的层序遍历
leetcode之二叉树的层序遍历(难度:中等)
题目要求
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例1
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例2
输入:root = [1]
输出:[[1]]
示例3
输入:root = []
输出:[]
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List levelOrder(TreeNode root) { } }
做题思路
这道题我们可以借助队列这个数据结构,首先先将根节点放进队列中,然后我们计算此时队列的大小,记录下来,这个数字其实就是各层根节点的个数。我们等会要弹出相同数量的元素,在弹出的同时我们需要将弹出的根节点放进List中,并且将次根节点的非空左树和右树插入队列中。我们举个例子。
最后我们返回List就是我们需要的结果。
代码实现
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List levelOrder(TreeNode root) { List list = new ArrayList(); //当根节点为null时,我们直接返回list,这里list也为null if(root == null) { return list; } Queue queue = new LinkedList(); queue.offer(root); while(!queue.isEmpty()) { int size = queue.size(); List tmp = new ArrayList(); while(size > 0) { TreeNode cur = queue.poll(); tmp.add(cur.val); if(cur.left != null) { queue.offer(cur.left); } if(cur.right != null) { queue.offer(cur.right); } size--; } list.add(tmp); } return list; } }
2.从前序与中序遍历序列构造二叉树
leetcode之从前序与中序遍历序列构造二叉树(难度:中等)
题目要求
给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1]
输出: [-1]
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public TreeNode buildTree(int[] preorder, int[] inorder) { } }
做题思路
我们通过二叉树的前序遍历序列来确定根节点,通过中序遍历来确定左右子树,我们直接来举一个例子。
用inBegin和inEnd来分别表示左右子树的范围,当表示左树时inEnd = index-1
表示右树时inBegin = index+1
此时9的左树为null,说明3的左树的树叶是9,也就是说我们递归结束的条件是inBegin > inEnd
代码实现
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { //创建一个成员变量用来遍历前序遍历序列 public int i = 0; public TreeNode buildTree(int[] preorder, int[] inorder) { //我们inBegin默认为0,inEnd默认数组的最后一个元素的下标 return buildTreeChild(preorder,inorder,0,inorder.length-1); } public TreeNode buildTreeChild(int[] preorder,int[] inorder,int inBegin, int inEnd) { //递归结束的条件 if(inBegin > inEnd) { return null; } TreeNode root = new TreeNode(preorder[i]); int index = findIndex(preorder[i],inorder,inBegin,inEnd); i++; root.left = buildTreeChild(preorder,inorder,inBegin,index-1); root.right = buildTreeChild(preorder,inorder,index+1,inEnd); return root; } public int findIndex(int key,int[] inorder,int inBegin,int inEnd) { for(int j = inBegin; j if(key == inorder[j]) { return j; } } return -1; } } public TreeNode buildTree(int[] inorder, int[] postorder) { } } public int i = 0; public TreeNode buildTree(int[] inorder, int[] postorder) { i = postorder.length-1; return buildTreeChild(inorder,postorder,0,postorder.length-1); } public TreeNode buildTreeChild(int[] inorder,int[] postorder,int inBegin,int inEnd) { if(inBegin inEnd) { return null; } TreeNode root = new TreeNode(postorder[i]); int index = findIndex(postorder[i],inorder,inBegin,inEnd); i--; root.right = buildTreeChild(inorder,postorder,index+1,inEnd); root.left = buildTreeChild(inorder,postorder,inBegin,index-1); return root; } public int findIndex(int key, int[] inorder, int inBegin, int inEnd) { for(int j = inBegin; j if(inorder[j] == key) { return j; } } return -1; } }