利用Python爬取高德地图全国地铁站点信息

2024-03-07 1276阅读

温馨提示:这篇文章已超过381天没有更新,请注意相关的内容是否还可用!

利用Python中的requests库进行地铁站点信息的获取,同时将数据保存在本机excel中

# 首先引入所需要的包
import requests
from bs4 import BeautifulSoup
import pandas as pd
import json
# 发送 GET 请求获取网页内容
url = 'http://map.amap.com/subway/index.html'
response = requests.get(url)
# 第一步:爬取两个 div 中的城市数据(包括 ID 和拼音),生成城市集合
if response.status_code == 200:
    # 解码
    response_content = response.content.decode('utf-8')
    # 使用 Beautiful Soup 解析网页内容
    soup = BeautifulSoup(response_content, 'html.parser')
    # 从这里开始,你可以使用 Beautiful Soup 对象(soup)来提取所需的信息
    # 例如,查找标题
    title = soup.title
    # 通过Beautiful Soup来找到城市信息元素,并提取这个元素的信息
    for soup_a in soup.find('div', class_='city-list fl').find_all('a'):
        city_name_py = soup_a['cityname']
        city_id = soup_a['id']
        city_name_ch = soup_a.get_text()
        city_info_list.append({'name_py': city_name_py, 'id': city_id, 'name_ch': city_name_ch})
        # 获取未显示出来的城市列表
    for soup_a in soup.find('div', class_='more-city-list').find_all('a'):
        city_name_py = soup_a['cityname']
        city_id = soup_a['id']
        city_name_ch = soup_a.get_text()
        city_info_list.append({'name_py': city_name_py, 'id': city_id, 'name_ch': city_name_ch})
        print(city_info_list)
else:
    print("无法获取网页内容")
for city_info in city_info_list:
    city_id = city_info.get("id")
    city_name = city_info.get("name_py")
    city_name_ch = city_info.get("name_ch")
    print("开始爬取城市" + city_name_ch + "的数据")
    city_lines_list = []
    # 第二步:遍历城市集合,构造每一个城市的 url,并下载数据
    # 构造每个城市的url
    url = "http://map.amap.com/service/subway?_1717380520536&srhdata=" + city_id + '_drw_' + city_name + '.json'
    res = requests.get(url)
    content = res.content.decode('utf-8')
    # 将内容字符串转换成json对象
    content_json = json.loads(content)
    # 提取该城市的所有地铁线list
    line_info_list = content_json.get("l")
    # 第三步:开始处理每一个地铁线,提取内容到dataframe中
    for line_info in line_info_list:
        # 地铁线名字
        line_name = line_info["kn"]
        # 处理地铁线站点
        df_per_zd = pd.DataFrame(line_info["st"])
        df_per_zd = df_per_zd[['n', 'sl', 'poiid', 'sp', 't', 'su', 'sid']]
        df_per_zd['gd经度'] = df_per_zd['sl'].apply(lambda x: x.split(',')[0])
        df_per_zd['gd纬度'] = df_per_zd['sl'].apply(lambda x: x.split(',')[1])
        df_per_zd.drop('sl', axis=1, inplace=True)
        df_per_zd['路线名称'] = line_info['ln']
        df_per_zd['城市名称'] = city_name_ch
        df_per_zd.rename(columns={"n": "站点名称", "poiid": "POI编号", "sp": "拼音名称", "t": "换乘标志 1:换乘,0:不可换乘", "su": "su", "sid": "sid编号"}, inplace=True)
        # 先将这条地铁线处理过的dataframe存起来,我们后面给他放到一张表里
        city_lines_list.append(df_per_zd)
    # 这段代码就是将地铁线数据列表聚合到一张表里,形成每个城市的地铁站数据
    city_subway_data = pd.concat(city_lines_list, ignore_index=True)
    # 第四步:将处理好的文件保存为xlsx
    city_subway_data.to_excel(city_name_ch + '.xlsx', sheet_name='Sheet1')

利用Python爬取高德地图全国地铁站点信息

VPS购买请点击我

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们,邮箱:ciyunidc@ciyunshuju.com。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

目录[+]