Flink算子通用状态应用测试样例

03-01 1505阅读

Flink算子通用状态应用测试样例

Flink算子通用状态应用测试样例
(图片来源网络,侵删)
1. 获取Flink执行环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
    

2. 创建数据源,生成随机数据
        DataStream source = env.addSource(new SourceFunction() {
            @Override
            public void run(SourceContext ctx) throws Exception {
                while (true) {
                    HashMap hashMap = new HashMap();
                    hashMap.put("ID", new Random().nextInt(3) + 1 + "");
                    hashMap.put("AMT", "1");
                    System.out.println("------");
                    System.out.println("生产数据:" + hashMap);
                    ctx.collect(hashMap);
                    Thread.sleep(1000);
                }
            }
            @Override
            public void cancel() {}
        });

3. 按照ID和星期几进行分组
        KeyedStream keyedStream = source.keyBy(new KeySelector() {
            @Override
            public String getKey(Map value) throws Exception {
                return value.get("ID") + LocalDate.now().getDayOfWeek();
            }
        });

4. 处理函数,实现状态初始化和元素处理逻辑
        SingleOutputStreamOperator process = keyedStream.process(new KeyedProcessFunction() {
            private AggregatingState aggState;
            @Override
            public void open(Configuration parameters) throws Exception {
                // 配置状态的TTL
                StateTtlConfig ttlConfig = StateTtlConfig
                        .newBuilder(Time.days(1))
                        .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) // 仅在创建和写入时清除,另一个读和写时清除
                        .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired) // 不退回过期值
                        .build();
                // 初始化状态
                AggregatingStateDescriptor aggRes = new AggregatingStateDescriptor("aggRes", new AggregateFunction() {
                    @Override
                    public Map createAccumulator() {
                        return new HashMap();
                    }
                    @Override
                    public Map add(Map in, Map acc) {
                        String amt = acc.get("AMT");
                        if (amt == null) {
                            acc.put("ID", in.get("ID"));
                            acc.put("AMT", in.get("AMT"));
                        } else {
                            acc.put("AMT", Integer.valueOf(in.get("AMT")) + Integer.valueOf(amt) + "");
                        }
                        return acc;
                    }
                    @Override
                    public Map getResult(Map acc) {
                        return acc;
                    }
                    @Override
                    public Map merge(Map a, Map b) {
                        return null;
                    }
                }, TypeInformation.of(new TypeHint() {
                }));
                aggRes.enableTimeToLive(ttlConfig);
                aggState = getRuntimeContext().getAggregatingState(aggRes);
            }
            @Override
            public void processElement(Map value, KeyedProcessFunction.Context ctx, Collector out) throws Exception {
                aggState.add(value);
                out.collect(aggState.get());
            }
        });

5. 打印聚合结果
        process.map((MapFunction) value -> {
            System.out.println("聚合结果:" + value);
            return null;
        });

6. 执行作业
        env.execute("Flink Common State Test");

7. 执行结果
------
生产数据:{AMT=1, ID=2}
聚合结果:{AMT=1, ID=2}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=1, ID=3}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=2, ID=3}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=1, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=2, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=3, ID=1}
...

这段代码实现了一个 Flink 作业,生成随机数据并对数据进行状态聚合处理。其中包括数据源生成、按键分区、状态初始化、元素聚合处理和结果输出。可以作为多场景下通用的实时数据处理模型。

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]