Krylov matrix

02-29 1086阅读

Krylov矩阵是一种在数值线性代数中使用的矩阵,尤其是在迭代解法中用于求解线性方程组、特征值问题和其他线性代数问题。它是由俄国数学家阿列克谢·尼古拉耶维奇·克雷洛夫(Alexei Nikolaevich Krylov)的名字命名的。

Krylov matrix
(图片来源网络,侵删)

Krylov子空间由以下形式的矩阵生成:

K ( A , v ) = { v , A v , A 2 v , … , A m − 1 v } K(A, \mathbf{v}) = \{\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{m-1}\mathbf{v}\} K(A,v)={v,Av,A2v,…,Am−1v}

其中 A A A是一个 n × n n \times n n×n方阵, v \mathbf{v} v 是一个 n n n 维向量, m m m通常远小于 n n n。这些向量可以被看作是通过不断地将矩阵 A A A 应用于向量 v \mathbf{v} v 来生成的。所生成的Krylov矩阵可以表达为:

K m = [ v , A v , A 2 v , … , A m − 1 v ] K_m = [\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{m-1}\mathbf{v}] Km​=[v,Av,A2v,…,Am−1v]

在这个定义中,每个 A i v A^i\mathbf{v} Aiv被称为Krylov矩阵的一列,这个矩阵的列跨越了 A A A的一个Krylov子空间。

Krylov矩阵在迭代方法中非常重要,因为它们与系统的特征值和特征向量有紧密的联系,并且能够在没有完整解决问题的情况下提供有用的近似信息。例如,Krylov子空间方法,如共轭梯度法(用于对称正定矩阵)和GMRES(Generalized Minimal Residual Method,用于非对称问题),就是基于构建这种类型的子空间来迭代地逼近线性方程组 A x = b Ax = b Ax=b的解。

简而言之,Krylov矩阵和子空间为解决大型稀疏矩阵问题提供了一种高效的计算方法,广泛应用于科学计算和工程领域。

VPS购买请点击我

文章版权声明:除非注明,否则均为主机测评原创文章,转载或复制请以超链接形式并注明出处。

目录[+]